我试图同时使用list.files和dir; 两个命令都返回相同的输出.这两个命令之间的关键区别是什么以及它们的使用环境是什么?
from sklearn import MinMaxScaler, StandardScaler
import numpy as np
a = ([1,2,3],[4,5,6])
stan = StandardScaler()
mima = MinMaxScaler()
stan.fit_tranform(a)
mima.fit_transform(a)
results after runnin stan and mima
array([[-1., -1., -1.],
[ 1., 1., 1.]])
array([[0., 0., 0.],
[1., 1., 1.]])
Run Code Online (Sandbox Code Playgroud)
但是,当我尝试传递这样的一维数组时,
b = np.random.random(10)
stan.fit_tranform(b)
mima.fit_transform(b)
Run Code Online (Sandbox Code Playgroud)
我有这样的错误
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/anaconda3/lib/python3.6/site-packages/sklearn/base.py", line 517, in fit_transform
return self.fit(X, **fit_params).transform(X)
File "/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py", line 308, in fit
return self.partial_fit(X, y)
File "/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py", line 334, in …Run Code Online (Sandbox Code Playgroud) 有没有办法在Python中生成随机字母。我遇到过一个代码,可以从 az 生成随机字母。
例如,以下代码生成以下输出。
import pandas as pd
import numpy as np
import string
ran1 = np.random.random(5)
print(random)
[0.79842166 0.9632492 0.78434385 0.29819737 0.98211011]
ran2 = string.ascii_lowercase
'abcdefghijklmnopqrstuvwxyz'
Run Code Online (Sandbox Code Playgroud)
但是,我想生成随机字母,输入为随机字母的数量(示例 3),所需的输出为 [a, f, c]。提前致谢。
我无法在 Jupyter 笔记本中绘制直方图。这是下面的代码和响应它的错误消息。
import pandas as pd
import numpy as np
from sklearn.datasets import load_boston
import matplotlib.pyplot as plt
housing_data = load_boston()
%matplotlib inline
housing_data.hist(bins = 50, figsize = (20, 15))
plt.show()
KeyError Traceback (most recent call last)
/anaconda3/lib/python3.6/site-packages/sklearn/utils/__init__.py in __getattr__(self, key)
60 try:
---> 61 return self[key]
62 except KeyError:
KeyError: 'hist'
During handling of the above exception, another exception occurred:
AttributeError Traceback (most recent call last)
<ipython-input-17-570a88b85d5d> in <module>()
----> 1 housing_data.hist(bins = 50, figsize = (20, 15)) …Run Code Online (Sandbox Code Playgroud) numpy ×2
pandas ×2
python-3.x ×2
matplotlib ×1
python ×1
r ×1
random ×1
scikit-learn ×1
string ×1