我在没有找到解决方案的情况下进行了广泛的研究.我已经清理了我的数据集如下:
library("raster")
impute.mean <- function(x) replace(x, is.na(x) | is.nan(x) | is.infinite(x) ,
mean(x, na.rm = TRUE))
losses <- apply(losses, 2, impute.mean)
colSums(is.na(losses))
isinf <- function(x) (NA <- is.infinite(x))
infout <- apply(losses, 2, is.infinite)
colSums(infout)
isnan <- function(x) (NA <- is.nan(x))
nanout <- apply(losses, 2, is.nan)
colSums(nanout)
Run Code Online (Sandbox Code Playgroud)
问题出现了运行预测算法:
options(warn=2)
p <- predict(default.rf, losses, type="prob", inf.rm = TRUE, na.rm=TRUE, nan.rm=TRUE)
Run Code Online (Sandbox Code Playgroud)
所有的研究都表明它应该是数据中的NA或Inf或NaN,但我没有发现任何数据.我正在制作数据和randomForest摘要可用于[删除] Traceback的调查并没有显示太多(对我来说):
4: .C("classForest", mdim = as.integer(mdim), ntest = as.integer(ntest),
nclass = as.integer(object$forest$nclass), maxcat = as.integer(maxcat),
nrnodes = as.integer(nrnodes), jbt = as.integer(ntree), …
Run Code Online (Sandbox Code Playgroud)