我是caffe的新手,我试图用Min-Max Normalization将卷积输出归一化到0到1之间.
Out = X - Xmin /(Xmax - Xmin)
我检查了很多层(功率,比例,批量标准化,MVN),但没有人给我层中的最小 - 最大标准化输出.谁能帮我 ??
*************我的原型文件*****************
name: "normalizationCheck"
layer {
name: "data"
type: "Input"
top: "data"
input_param { shape: { dim: 1 dim: 1 dim: 512 dim: 512 } }
}
layer {
name: "normalize1"
type: "Power"
bottom: "data"
top: "normalize1"
power_param {
shift: 0
scale: 0.00392156862
power: 1
}
}
layer {
bottom: "normalize1"
top: "Output"
name: "conv1"
type: "Convolution"
convolution_param {
num_output: 1
kernel_size: 1
pad: 0
stride: 1 …
Run Code Online (Sandbox Code Playgroud) 我有这个网'RGB2GRAY.prototxt'
:
name: "RGB2GRAY"
layer {
name: "data"
type: "Input"
top: "data"
input_param { shape: { dim: 1 dim: 3 dim: 512 dim: 512 } }
}
layer {
name: "conv1"
bottom: "data"
top: "conv1"
type: "Convolution"
convolution_param {
num_output: 1
kernel_size: 1
pad: 0
stride: 1
bias_term: false
weight_filler {
type: "constant"
value: 1
}
}
}
Run Code Online (Sandbox Code Playgroud)
我正在尝试使用此公式将RGB转换为灰色的自己的网络
x = 0.299r + 0.587g + 0.114b.
Run Code Online (Sandbox Code Playgroud)
基本上,我可以使用自定义权重(0.299,0.587,0.114)进行内核大小为1的卷积.但我没有得到如何修改卷积层.我设置了权重和偏差,但无法修改过滤器值.我尝试过以下方法,但无法更新卷积滤镜.
shared_ptr<Net<float> > net_;
net_.reset(new Net<float>("path of model file", TEST));
const shared_ptr<Blob<float> >& …
Run Code Online (Sandbox Code Playgroud)