假设我有两个具有以下结构的项目:
/项目1
/项目2
现在我开发了一个对这两个项目都有用的函数/类。我想把它放在 project1/project2 目录之外的某个地方,并将它作为一个单独的项目进行维护。所以我可能需要这样的结构:
/项目1
/项目2
/共享
如果我将辅助函数/类放在共享文件夹中的项目中,如何从 project1/project2 使用它们?
目前我的选择是在 project1/project2 中使用 sys.path.append('/shared') ,然后从共享文件夹导入。
有没有更多的pythonic方法来做同样的事情?
我有一个数据框:
将 pandas 导入为 pd
df = pd.DataFrame([[1, 'a'],
[1, 'a'],
[1, 'b'],
[1, 'a'],
[2, 'a'],
[2, 'b'],
[2, 'a'],
[2, 'b'],
[3, 'b'],
[3, 'a'],
[3, 'b'],
], columns=['session', 'issue'])
df
Run Code Online (Sandbox Code Playgroud)
我想对会议中的问题进行排名。我尝试过:
df.groupby(['session', 'issue']).size().rank(ascending=False, method='dense')
session issue
1 a 1.0
b 3.0
2 a 2.0
b 2.0
3 a 3.0
b 2.0
dtype: float64
Run Code Online (Sandbox Code Playgroud)
我需要的是这样的结果:
我有一个数据框:
df = pd.DataFrame({"max_cr_date":{"0":1569115380000,"1":1569115500000,"2":1569115560000,"3":1569115620000,"4":1569115680000,"5":1569115740000,"6":1569115800000,"7":1569115860000,"8":1569115920000,"9":1569115980000,"10":1569116040000,"11":1569116100000,"12":1569116160000,"13":1569116220000,"14":1569130800000,"15":1569130800000,"16":1569130800000,"17":1569130800000,"18":1569130860000,"19":1569130860000,"20":1569130860000,"21":1569130860000,"22":1569131100000,"23":1569131100000,"24":1569131160000,"25":1569131160000,"26":1569131220000,"27":1569131220000,"28":1569131280000,"29":1569131280000,"30":1569131340000,"31":1569131340000,"32":1569131400000,"33":1569131400000,"34":1569131460000,"35":1569131460000,"36":1569131520000,"37":1569131520000,"38":1569131580000,"39":1569131580000,"40":1569131640000,"41":1569131640000,"42":1569131700000,"43":1569131700000},"cnt":{"0":14,"1":14,"2":14,"3":14,"4":14,"5":14,"6":14,"7":14,"8":14,"9":14,"10":14,"11":14,"12":14,"13":14,"14":11,"15":12,"16":13,"17":14,"18":11,"19":12,"20":13,"21":14,"22":11,"23":12,"24":11,"25":12,"26":11,"27":12,"28":11,"29":12,"30":11,"31":12,"32":11,"33":12,"34":11,"35":12,"36":11,"37":12,"38":11,"39":12,"40":11,"41":12,"42":11,"43":12},"uuid":{"0":80,"1":66,"2":70,"3":80,"4":72,"5":110,"6":358,"7":123,"8":110,"9":123,"10":96,"11":89,"12":83,"13":58,"14":7,"15":28,"16":9,"17":5,"18":129,"19":116,"20":266,"21":87,"22":57,"23":86,"24":99,"25":36,"26":89,"27":30,"28":88,"29":18,"30":75,"31":26,"32":94,"33":29,"34":81,"35":32,"36":64,"37":19,"38":74,"39":26,"40":77,"41":17,"42":51,"43":21}})
df.max_cr_date = pd.to_datetime(df.max_cr_date, unit='ms')
df
Run Code Online (Sandbox Code Playgroud)
df.max_cr_date.agg(['min', 'max'])
min 2019-09-22 01:23:00
max 2019-09-22 05:55:00
Name: max_cr_date, dtype: datetime64[ns]
Run Code Online (Sandbox Code Playgroud)
当我尝试使用 seaborn 绘制数据框时,我得到了错误的 xlim。例如,max_cr_date 范围是从 2019-09-22 01:23:00 到 2019-09-22 05:55:00,但在图表上您可以看到 2000 年、2004 年...
如何将 xlim 设置为 max_cr_date 列的最小值/最大值?
问候。
我需要异步读取 StdIn 以获取消息(json 由 \r\n 终止),并在处理异步后将更新的消息写入 StdOut。
目前我正在同步进行,例如:
class SyncIOStdInOut():
def write(self, payload: str):
sys.stdout.write(payload)
sys.stdout.write('\r\n')
sys.stdout.flush()
def read(self) -> str:
payload=sys.stdin.readline()
return payload
Run Code Online (Sandbox Code Playgroud)
如何执行相同但异步的操作?
如果我有枚举类:
from enum import Enum
class Colors(Enum):
RED = 1
ORANGE = 2
GREEN = 3
Run Code Online (Sandbox Code Playgroud)
如果我有一个数据框,它的一列是颜色(它可以是小写的):
>>> import pandas as pd
>>> df = pd.DataFrame({'X':['A', 'B', 'C', 'A'], 'color' : ['GREEN', 'RED', 'ORANGE', 'ORANGE']})
>>> df
X color
0 A GREEN
1 B RED
2 C ORANGE
3 A ORANGE
Run Code Online (Sandbox Code Playgroud)
如何将颜色列作为尊重颜色类值的分类类型,并按“颜色”和“X”(升序)对数据框进行排序?
例如,上面的数据框应该排序为:
X, color
--------
B, RED
A, ORANGE
C, ORANGE
A, GREEN
Run Code Online (Sandbox Code Playgroud) 我已经对熊猫数据框进行了切片。
end_date = df[-1:]['end']
type(end_date)
Out[4]: pandas.core.series.Series
end_date
Out[3]:
48173 2017-09-20 04:47:59
Name: end, dtype: datetime64[ns]
Run Code Online (Sandbox Code Playgroud)
48173并只获取2017-09-20 04:47:59字符串?我必须使用2017-09-20 04:47:59作为参数来调用 REST API ,所以我必须从 Pandasdatetime64系列中获取字符串。48173并只获取 datetime 对象 [类似的东西datetime.datetime.strptime('2017-09-20 04:47:59', '%Y-%m-%d %H:%M:%S')]。我需要它,因为稍后我将不得不检查是否'2017-09-20 04:47:59' < datetime.datetime(2017,1,9) 我只需要转换一个单元格值,而不是整列。如何进行这些转换?
python ×4
pandas ×3
python-3.x ×2
datetime64 ×1
enums ×1
group-by ×1
matplotlib ×1
rank ×1
scatter-plot ×1
seaborn ×1
size ×1
sorting ×1
stdin ×1
stdout ×1