model_save_name = 'classifier.pt'
path = F"/content/gdrive/My Drive/Others/{model_save_name}"
model.load_state_dict(torch.load(path), strict = False)
Run Code Online (Sandbox Code Playgroud)
尝试从路径加载到模型 state_dict 中。稍后,相同的模型 state_dict 将用于保存检查点,例如torch.save(model.state_dict(), path)
错误回溯:
UnpicklingError Traceback (most recent call last)
<ipython-input-69-7cb7940c24e3> in <module>()
----> 1 model.load_state_dict(torch.load(path), strict = False)
/usr/local/lib/python3.6/dist-packages/torch/serialization.py in load(f, map_location, pickle_module)
356 f = open(f, 'rb')
357 try:
--> 358 return _load(f, map_location, pickle_module)
359 finally:
360 if new_fd:
/usr/local/lib/python3.6/dist-packages/torch/serialization.py in _load(f, map_location, pickle_module)
530 f.seek(0)
531
--> 532 magic_number = pickle_module.load(f)
533 if magic_number != MAGIC_NUMBER:
534 raise RuntimeError("Invalid magic number; …Run Code Online (Sandbox Code Playgroud) 问题
\n\n我的安装可能存在一些问题,better-sqlite3因为当我尝试执行我的index.js(单击以在pastebin上显示它)时
node index.js
总是有相同的结果。我在 MacOS 上尝试过,它可以工作,但在我的机器上基于 Linux Lite Ubuntu 的发行版中,它没有给我以下相同的错误:
\n\n/home/mp8/webproject/electron-better-sqlite/node_modules/bindings/bindings.js:96\n throw err\n ^\n\nError: Could not locate the bindings file. Tried:\n \xe2\x86\x92 /home/mp8/webproject/electron-better-sqlite/node_modules/better-sqlite3/build/better_sqlite3.node\n \xe2\x86\x92 /home/mp8/webproject/electron-better-sqlite/node_modules/better-sqlite3/build/Debug/better_sqlite3.node\n \xe2\x86\x92 /home/mp8/webproject/electron-better-sqlite/node_modules/better-sqlite3/build/Release/better_sqlite3.node\n \xe2\x86\x92 /home/mp8/webproject/electron-better-sqlite/node_modules/better-sqlite3/out/Debug/better_sqlite3.node\n \xe2\x86\x92 /home/mp8/webproject/electron-better-sqlite/node_modules/better-sqlite3/Debug/better_sqlite3.node\n \xe2\x86\x92 /home/mp8/webproject/electron-better-sqlite/node_modules/better-sqlite3/out/Release/better_sqlite3.node\n \xe2\x86\x92 /home/mp8/webproject/electron-better-sqlite/node_modules/better-sqlite3/Release/better_sqlite3.node\n \xe2\x86\x92 /home/mp8/webproject/electron-better-sqlite/node_modules/better-sqlite3/build/default/better_sqlite3.node\n \xe2\x86\x92 /home/mp8/webproject/electron-better-sqlite/node_modules/better-sqlite3/compiled/8.11.3/linux/x64/better_sqlite3.node\n at bindings (/home/mp8/webproject/electron-better-sqlite/node_modules/bindings/bindings.js:93:9)\n at Object.<anonymous> (/home/mp8/webproject/electron-better-sqlite/node_modules/better-sqlite3/lib/database.js:4:40)\n at Module._compile (module.js:652:30)\n at Object.Module._extensions..js (module.js:663:10)\n at Module.load (module.js:565:32)\n at tryModuleLoad (module.js:505:12)\n at Function.Module._load (module.js:497:3)\n at Module.require (module.js:596:17)\n at require (internal/module.js:11:18)\n at Object.<anonymous> (/home/mp8/webproject/electron-better-sqlite/node_modules/better-sqlite3/index.js:2:18)\nRun Code Online (Sandbox Code Playgroud)\n\n我的目的是什么? …
我正在尝试在 Keras 中定义自定义损失函数
def yolo_loss(y_true, y_pred):
Run Code Online (Sandbox Code Playgroud)
这里 y_true 和 y_pred 的形状是 [batch_size,19,19,5]。
对于批次中的每个图像,我想将损失计算为:
loss =
square(y_true[:,:,0] - y_pred[:,:,0])
+ square(y_true[:,:,1] - y_pred[:,:,1])
+ square(y_true[:,:,2] - y_pred[:,:,2])
+ (sqrt(y_true[:,:,3]) - sqrt(y_pred[:,:,3]))
+ (sqrt(y_true[:,:,4]) - sqrt(y_pred[:,:,4]))
Run Code Online (Sandbox Code Playgroud)
我想到了几种方法来做到这一点,
1)使用for循环:
def yolo_loss(y_true, y_pred):
y_ret = tf.zeros([1,y_true.shape[0]])
for i in range(0,int(y_true.shape[0])):
op1 = y_true[i,:,:,:]
op2 = y_pred[i,:,:,:]
class_error = tf.reduce_sum(tf.multiply((op1[:,:,0]-op2[:,:,0]),(op1[:,:,0]-op2[:,:,0])))
row_error = tf.reduce_sum(tf.multiply((op1[:,:,1]-op2[:,:,1]),(op1[:,:,1]-op2[:,:,1])))
col_error = tf.reduce_sum(tf.multiply((op1[:,:,2]-op2[:,:,2]),(op1[:,:,2]-op2[:,:,2])))
h_error = tf.reduce_sum(tf.abs(tf.sqrt(op1[:,:,3])-tf.sqrt(op2[:,:,3])))
w_error = tf.reduce_sum(tf.abs(tf.sqrt(op1[:,:,4])-tf.sqrt(op2[:,:,4])))
total_error = class_error + row_error + col_error + h_error + w_error …Run Code Online (Sandbox Code Playgroud) 当我尝试在ubuntu 18.04中安装spyder-vim时,如本页指示spyder-vim所示:我使用的命令是:
conda install spyder-vim -c spyder-ide
Run Code Online (Sandbox Code Playgroud)
但是,它不起作用,错误消息是:
解决环境:失败
PackagesNotFoundError:当前频道不提供以下软件包:
- 间谍病毒
当前频道:
- https://conda.anaconda.org/spyder-ide/linux-64
- https://conda.anaconda.org/spyder-ide/noarch
- https://repo.anaconda.com/pkgs/main/linux-64
- https://repo.anaconda.com/pkgs/main/noarch
- https://repo.anaconda.com/pkgs/free/linux-64
- https://repo.anaconda.com/pkgs/free/noarch
- https://repo.anaconda.com/pkgs/r/linux-64
- https://repo.anaconda.com/pkgs/r/noarch
- https://repo.anaconda.com/pkgs/pro/linux-64
- https://repo.anaconda.com/pkgs/pro/noarch
要搜索可能提供您所需的conda软件包的备用渠道,请导航至
Run Code Online (Sandbox Code Playgroud)https://anaconda.org并使用页面顶部的搜索栏。
之后,我尝试在anaconda.org中搜索spyder-vim的频道。没有spyder-vim的渠道。我不确定,还有其他安装方法吗?感谢您的回复。^ _ ^
我想做的第一件事是在 Windows 中安装 Selenium 并从 selenium 导入 webdriver。
因此,我使用pip install selenium安装了 Selenium并尝试使用以下命令导入 webdriver:
from selenium import webdriver
Run Code Online (Sandbox Code Playgroud)
但我得到了错误:
文件“C:\Users\VIJAY\Desktop\selenium.py”,第 2 行,来自 selenium import webdriver ImportError:无法导入名称“webdriver”
我哪里错了?
https://github.com/ITCoders/Human-detection-and-Tracking/blob/master/main.py 这是我为人体检测获得的代码。我正在使用 anaconda navigator(jupyter 笔记本)。我如何在其中使用参数解析器?如何给出视频路径-v?谁能告诉我这个问题的解决方案吗?由于程序的运行是通过单击运行按钮或输入shift+Enter来完成的。我需要进行人体检测。我是 python 和 opencv 的初学者。所以请帮忙。
所以我在Python中创建了一个简单的脚本,它将文件名作为命令行参数,并在脚本执行时读取给定的文件.非常简单,每当我执行脚本时,它不会打印文件内的文本,也不会出错.我对编程很陌生,并且已经在这段代码中打了几个小时.
import sys
def openfile(filename):
f = open(filename, mode='r')
f.read()
f.close()
if __name__ == '__main__':
openfile(filename = sys.argv[1])
print('script has been executed')
Run Code Online (Sandbox Code Playgroud)
快速免责声明我知道有人在几年前发布了类似的问题,但他没有直接回答为什么他的代码不能正常工作而且我没有得到我正在寻找答案的信息.也很抱歉我的英语不好.我尽力保持清晰,但英语不是我的第一语言.