小编sal*_*uer的帖子

R中的CausalImpact软件包不适用于Poisson bsts模型

我想在R中使用CausalImpact软件包来估算干预措施对传染病病例数的影响。我们通常将个案数的分布特征描述为泊松或负二项式。该bsts()函数使我们可以指定泊松族。但是,这遇到了错误CausalImpact()

set.seed(1)
x1 <- 100 + arima.sim(model = list(ar = 0.999), n = 100)
y <- rpois(100, 1.2 * x1)
y[71:100] <- y[71:100] + 10
data <- cbind(y, x1)
pre.period <- c(1, 70)
post.period <- c(71, 100)
post.period.response <- y[post.period[1] : post.period[2]]
y[post.period[1] : post.period[2]] <- NA
ss <- AddLocalLevel(list(), y)
bsts.model <- bsts(y ~ x1, ss, family="poisson", niter = 1000)
impact <- CausalImpact(bsts.model = bsts.model,
                   post.period.response = post.period.response)

Error in rnorm(prod(dim(state.samples)), 0, sigma.obs) : invalid arguments …
Run Code Online (Sandbox Code Playgroud)

r bayesian causality

5
推荐指数
0
解决办法
277
查看次数

标签 统计

bayesian ×1

causality ×1

r ×1