受tf.keras.Model子类化的启发,我创建了自定义模型.
我可以训练它并获得成功的结果,但我无法保存它.
我使用python3.6和tensorflow v1.10(或v1.9)
这里的最小完整代码示例:
import tensorflow as tf
from tensorflow.keras.datasets import mnist
class Classifier(tf.keras.Model):
def __init__(self):
super().__init__(name="custom_model")
self.batch_norm1 = tf.layers.BatchNormalization()
self.conv1 = tf.layers.Conv2D(32, (7, 7))
self.pool1 = tf.layers.MaxPooling2D((2, 2), (2, 2))
self.batch_norm2 = tf.layers.BatchNormalization()
self.conv2 = tf.layers.Conv2D(64, (5, 5))
self.pool2 = tf.layers.MaxPooling2D((2, 2), (2, 2))
def call(self, inputs, training=None, mask=None):
x = self.batch_norm1(inputs)
x = self.conv1(x)
x = tf.nn.relu(x)
x = self.pool1(x)
x = self.batch_norm2(x)
x = self.conv2(x)
x = tf.nn.relu(x)
x = self.pool2(x)
return …
Run Code Online (Sandbox Code Playgroud) 如何获得后台进程的返回值?如果我这样做,我会得到0
#!/bin/bash
SomeCommand&
echo $?
Run Code Online (Sandbox Code Playgroud)
输出: #~0
但是,如果我尝试
SomeCommand
echo $?
Run Code Online (Sandbox Code Playgroud)
输出: #~255
我读了那个等命令,但是如果那样做的话
SomeCommand$
wait $!
echo $?
Run Code Online (Sandbox Code Playgroud)
如果上一个命令没有完成,我无法运行下一个命令.