我有一个数据集,在其中执行主成分分析(PCA)。ValueError当我尝试转换数据时会收到一条消息。以下是一些代码:
import pandas as pd
import numpy as np
import matplotlib as mpl
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA as sklearnPCA
data = pd.read_csv('test.csv',header=0)
X = data.ix[:,0:1000].values # values of 1000 predictor variables
Y = data.ix[:,1000].values # values of binary outcome variable
sklearn_pca = sklearnPCA(n_components=2)
X_std = StandardScaler().fit_transform(X)
Run Code Online (Sandbox Code Playgroud)
我在这里收到以下错误消息:
import pandas as pd
import numpy as np
import matplotlib as mpl
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA as sklearnPCA
data = pd.read_csv('test.csv',header=0)
X = …Run Code Online (Sandbox Code Playgroud) 假设我们有一个程序 test.R 调用另外两个程序 test1.R 和 test2.R :
source("test1.R")
source("test2.R")
Run Code Online (Sandbox Code Playgroud)
这是否意味着 R test1.R 先运行,然后运行 test2.R ?