我正在尝试使用pyspark来计算出现次数.
假设我有这样的数据:
data = sc.parallelize([(1,[u'a',u'b',u'd']),
(2,[u'a',u'c',u'd']),
(3,[u'a']) ])
count = sc.parallelize([(u'a',0),(u'b',0),(u'c',0),(u'd',0)])
Run Code Online (Sandbox Code Playgroud)
是否可以计算出现次数data并更新count?
结果应该是这样的[(u'a',3),(u'b',1),(u'c',1),(u'd',2)].
问题是关于特征检测的概念。找到图像的角点后卡住了,我想知道如何在计算的角点内找到特征点。
假设我有像这样的数据的灰度图像
A = [ 1 1 1 1 1 1 1 1;
1 3 3 3 1 1 4 1;
1 3 5 3 1 4 4 4;
1 3 3 3 1 4 4 4;
1 1 1 1 1 4 6 4;
1 1 1 1 1 4 4 4]
Run Code Online (Sandbox Code Playgroud)
如果我用
B = imregionalmax(A);
Run Code Online (Sandbox Code Playgroud)
结果将是这样
B = [ 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 0;
0 1 1 …Run Code Online (Sandbox Code Playgroud) I am stuck on the on how to manipulate the data structure.
I have header file that declare like this
struct item{
int i;
char str[88];
};
Run Code Online (Sandbox Code Playgroud)
and I have a C file that I want to make 9 structure items (I declare as global variable and I already include the header file):
struct item a[9];
Run Code Online (Sandbox Code Playgroud)
but when I want to put the data that I want into
foo()
{
...
// let's say I have data int in index …Run Code Online (Sandbox Code Playgroud)