我最近开始学习网络,我想安装scapy.我已经下载了最新版本(2.2.0),并且在我的计算机上有两个版本的python-2.6.1和3.3.2.我的操作系统是Windows 7 64位.
提取scapy并导航到终端中的正确文件夹后,我被指示运行"python setup.py install".我收到以下错误 -
文件"setup.py",第35行
os.chmod(fname,0755)
................................ ^
......................令牌无效
(对齐点)
我该如何解决这个问题?
使用NLTK运行Python脚本时我得到了这个:
Traceback (most recent call last):
File "cpicklesave.py", line 56, in <module>
pos = nltk.pos_tag(words)
File "/usr/lib/python2.7/site-packages/nltk/tag/__init__.py", line 110, in pos_tag
tagger = PerceptronTagger()
File "/usr/lib/python2.7/site-packages/nltk/tag/perceptron.py", line 140, in __init__
AP_MODEL_LOC = str(find('taggers/averaged_perceptron_tagger/'+PICKLE))
File "/usr/lib/python2.7/site-packages/nltk/data.py", line 641, in find
raise LookupError(resource_not_found)
LookupError:
**********************************************************************
Resource u'taggers/averaged_perceptron_tagger/averaged_perceptro
n_tagger.pickle' not found. Please use the NLTK Downloader to
obtain the resource: >>> nltk.download()
Searched in:
- '/root/nltk_data'
- '/usr/share/nltk_data'
- '/usr/local/share/nltk_data'
- '/usr/lib/nltk_data'
- '/usr/local/lib/nltk_data'
**********************************************************************
Run Code Online (Sandbox Code Playgroud)
有谁能解释这个问题?
提前道歉,我知道评估订单的一般主题已经有很多SO问题.但是,看过它们之后,我想澄清一些我认为不等于重复的具体要点.假设我有以下代码:
#include <iostream>
auto myLambda(int& n)
{
++n;
return [](int param) { std::cout << "param: " << param << std::endl; };
}
int main()
{
int n{0};
myLambda(n)(n);
return 0;
}
Run Code Online (Sandbox Code Playgroud)
上面的程序在编译时输出"n:0".在这里我们有未指定的排序:它可以很容易地输出"n:1"发生了不同的评估顺序.
我的问题是:
在上面的最终函数调用(即lambda表达式调用)中,后缀表达式myLambda(0),其参数n和后续函数调用本身之间的排序关系究竟是什么?
以上是未定义或未指定行为的示例- 以及为什么(参考标准)?
如果我将lambda代码更改为[](int param) { std::cout << "hello" << std::endl }(即使结果独立于其参数,因此任何评估顺序决策,使行为确定性),上述2)的答案是否仍然相同?
编辑:我已将lambda参数名称从'n'更改为'param',因为这似乎导致了混淆.
c++ operator-precedence undefined-behavior language-lawyer c++14
我有一个返回指针和长度的函数,我想调用std::string::assign(pointer, length).clear当长度为零且指针可能为nullptr时,是否必须进行特殊情况(调用)?
C++标准说:
21.4.6.3 basic_string::assign
basic_string& assign(const charT* s, size_type n);
Requires: s points to an array of at least n elements of charT.
Run Code Online (Sandbox Code Playgroud)
那么如果n是零呢?什么是零字符数组,如何指向它?打电话有效吗?
s.assign(nullptr, 0);
Run Code Online (Sandbox Code Playgroud)
还是未定义的行为?
s当大小n为零时,libstdc ++的实现似乎不会取消引用指针,但这几乎不是保证.
简单问题:percentage_chance = 0.36
if <don't know what>:
#action here has 36% chance to execute
pass
Run Code Online (Sandbox Code Playgroud)
我怎么解决这个问题?
我正在拼命地将一个正在运行的散景小程序嵌入到烧瓶中,并且找不到合适的方法来执行此操作.我查看了所有示例,但我找不到一个包含更新数据的能力(最好的例子:sliders_applet).
如果我没弄错的话,我确实需要散景服务器才能更改数据(使用滑块等).以这种方式启动applet,例如:
bokeh-server --script sliders_app.py
Run Code Online (Sandbox Code Playgroud)
但我找不到合适的,或者至少是一种将sliders_app嵌入烧瓶的工作方式.由于应该可以使用多个applet,因此在散景服务器启动时指定一个小程序似乎并不干净.
我很乐意感谢任何帮助 - 散景看起来对我来说是一个很棒的工具.
我的目录中有一个配置文件servers.conf,conf/只要路由/servers被命中,我的ServerController就会读取该配置文件.这不具备性能,因为当文件不会更改时,它需要在每次连续命中时重新读取配置文件.此外,如果配置文件有问题,我可以尽快告诉用户,而不是在页面命中时抛出异常.
目前我在我的这个ServerController.scala:
case class Server(ip: String, port: String)
/**
* This controller creates an `Action` to handle HTTP requests to the
* application's server page.
*/
@Singleton
class ServerController @Inject() extends Controller {
/**
* Create an Action to render an HTML page with a the list of servers.
* The configuration in the `routes` file means that this method
* will be called when the application receives a `GET` request with …Run Code Online (Sandbox Code Playgroud) 我刚刚开始玩Rust,并试图为我编写的代码生成文档.当我发布时cargo doc,我看到了一些有点奇怪的东西.
21:53 $ cargo doc
Compiling regex-syntax v0.2.2
Compiling libc v0.2.2
Compiling memchr v0.1.7
Compiling aho-corasick v0.3.4
Compiling regex v0.1.41
Compiling my_project v0.0.1 (path/to/my_project)
Run Code Online (Sandbox Code Playgroud)
当我打开时my_project/target/doc/my_project/index.html,我注意到所有依赖项都包含在我的文档中:
我希望这些依赖项的文档对用户隐藏,因此我的文档仅显示如何使用我的代码.
我怎样才能做到这一点?
[root]
name = "my_project"
version = "0.0.1"
dependencies = [
"regex 0.1.41 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "aho-corasick"
version = "0.3.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [
"memchr 0.1.7 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "libc"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "memchr" …Run Code Online (Sandbox Code Playgroud) 我使用=:=示例类型lambda来制作简单的最小例子.
=:= 类型带两个参数,我想在类型级别讨好一个.
我采取天真的实现,type Curry[G] = {type l[L] = L =:= G}但在实际使用中它会导致错误:
type X = Int
type Y = Int
type CurryInt[T] = T =:= Int
type Curry[G] = {type l[L] = L =:= G}
type CurrStatic = {type l[L] = L =:= Int}
object CurryObj {type l[L] = L =:= Int}
trait Apply[P[_], T]
implicit def liftApply[P[_], T](implicit ev : P[T]) = new Apply[P,T] {}
implicitly[Apply[CurryInt, Y]] // ok
implicitly[Apply[Curry[X]#l, Y]] // fails
implicitly[Apply[Curry[X]#l, Y]](liftApply) …Run Code Online (Sandbox Code Playgroud) 我正在尝试使用scikit学习0.17与anaconda 2.7的多标签分类问题.这是我的代码
import pandas as pd
import pickle
import re
from sklearn.cross_validation import train_test_split
from sklearn.metrics.metrics import classification_report, accuracy_score, confusion_matrix
from nltk.stem import WordNetLemmatizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB as MNB
from sklearn.pipeline import Pipeline
from sklearn.grid_search import GridSearchCV
traindf = pickle.load(open("train.pkl","rb"))
X, y = traindf['colC'], traindf['colB'].as_matrix()
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7)
pip = Pipeline([
('vect', TfidfVectorizer(
analyzer='word',
binary=False,
decode_error='ignore',
dtype=<type 'numpy.int64'>,
encoding=u'utf-8',
input=u'content',
lowercase=True,
max_df=0.25,
max_features=None,
min_df=1,
ngram_range=(1, 1),
norm=u'l2',
preprocessor=None,
smooth_idf=True,
stop_words='english', …Run Code Online (Sandbox Code Playgroud) python machine-learning scikit-learn multilabel-classification
python ×5
c++ ×2
scala ×2
applet ×1
bokeh ×1
c++14 ×1
flask ×1
implicits ×1
installation ×1
nltk ×1
python-2.7 ×1
rust ×1
rust-cargo ×1
rustdoc ×1
scapy ×1
scikit-learn ×1
startup ×1
terminal ×1