**实施@jdehesa 后更新答案:我的代码如下所示:
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import os
import PIL as pil
from tensorflow import feature_column
from tensorflow_core.python.platform.flags import FLAGS
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
def print_type(name , x):
print(" {} type = {}".format(name, type(x)))
def _bytes_feature(value):
"""Returns a bytes_list from a string / byte."""
if isinstance(value, type(tf.constant(0))):
value = value.numpy() # BytesList won't unpack a string from an EagerTensor.
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _float_feature(value):
if not isinstance(value, …Run Code Online (Sandbox Code Playgroud) python machine-learning tensorflow tfrecord tensorflow-datasets