小编Oss*_*ssz的帖子

分配具有形状的张量时出现 OOM - 如何获得更多 GPU 内存

[在 Jupyter Lab 环境上运行] 在张量流上训练 CNN 时:

 history = model.fit(
        train_generator,
        steps_per_epoch=3,
        epochs=5,
        verbose = 1,
Run Code Online (Sandbox Code Playgroud)

'OOM when allocating tensor with shape'当我运行我的算法时,我得到了一个。

据我了解,这意味着我没有耗尽足够的 GPU 内存。如何连接 Jupyter 上的服务器以访问更多内存来运行我的训练神经网络?

我使用以下包和代码来加载图像:

from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Conduct pre-processing on the data to read and feed the images from the directories into the CNN

# Re-scale data as pixels have value of 0-255
train_datagen = ImageDataGenerator(rescale=1/255)
validation_datagen = ImageDataGenerator(rescale=1/255)

# Feed training dataset images in via batches of 250
train_generator = train_datagen.flow_from_directory ( …
Run Code Online (Sandbox Code Playgroud)

neural-network jupyter keras tensorflow jupyter-notebook

1
推荐指数
1
解决办法
1753
查看次数