我在这里发布了一个python笔记本:http://nbviewer.ipython.org/gist/awellis/9067358
我正在尝试使用PyMC 3创建一个probit回归模型,使用生成的数据来恢复已知参数(参见笔记本).拦截的估计几乎没有,但是斜率估计是偏离标记的.
我的模型看起来像这样:
with pm.Model() as model:
# priors
alpha = pm.Normal('alpha', mu=0, tau=0.001)
beta = pm.Normal('beta', mu=0, tau=0.001)
# linear predictor
theta_p = (alpha + beta * x)
# logic transform (just for comparison - this seems to work ok)
# def invlogit(x):
# import theano.tensor as t
# return t.exp(x) / (1 + t.exp(x))
# theta = invlogit(theta_p)
# Probit transform: this doesn't work
def phi(x):
import theano.tensor as t
return 0.5 * (1 …Run Code Online (Sandbox Code Playgroud)