#include<stdio.h>
main()
{
union d
{
unsigned int a:1;
unsigned int b:3;
unsigned :0;
unsigned int d:1;
unsigned int e:1;
};
union d aa;
aa.b=9;
printf("d.aa.a=%d d.aa.b=%d",aa.a, aa.b);
system("pause");
}
Run Code Online (Sandbox Code Playgroud)
在此问题中,联合的大小将不同于为联合分配的位字段数。谁能解释这个区别..剩余的内存又如何处理?
I have 2 large datasets.
First dataset contains about 130 million entries.
The second dataset contains about 40000 entries.
The data is fetched from MySQL tables.
I need to do a cross-join but I am getting
java.sql.SQLException: GC overhead limit exceeded
Run Code Online (Sandbox Code Playgroud)
What is the best optimum technique to do this in Scala?
Following is a snippet of my code:
val df1 = (spark.read.jdbc(jdbcURL,configurationLoader.mysql_table1,"id",100,100000,40, MySqlConnection.getConnectionProperties))
val df2 = (spark.read.jdbc(jdbcURL,configurationLoader.mysql_table2, MySqlConnection.getConnectionProperties))
val df2Cache = df2.repartition(40).cache()
val crossProduct = df1.join(df2Cache)
Run Code Online (Sandbox Code Playgroud)
df1 is the …