from sklearn import datasets
iris = datasets.load_iris()
from sklearn.naive_bayes import GaussianNB, MultinomialNB, BernoulliNB
gnb = GaussianNB()
y_pred = gnb.fit(iris.data, iris.target).predict(iris.data)
print("Number of mislabeled points out of a total %d points : %d" % (iris.data.shape[0],(iris.target != y_pred).sum()))
mnb = MultinomialNB()
y_pred_mnb = mnb.fit(iris.data, iris.target).predict(iris.data)
print("Number of mislabeled points out of a total %d points : %d" % (iris.data.shape[0],(iris.target != y_pred_mnb).sum()))
bnb = BernoulliNB()
y_pred_bnb = bnb.fit(iris.data, iris.target).predict(iris.data)
print("Number of mislabeled points out of a total %d points : %d" % (iris.data.shape[0],(iris.target …
Run Code Online (Sandbox Code Playgroud)