我正在尝试使用pandas DataFrame中的新数据创建一个更新存储在PyTable中的pandas DataFrame的函数.我想检查PyTable中是否缺少特定DatetimeIndexes的某些数据(值为NaN或新的Timestamp可用),将其替换为给定pandas DataFrame中的新值,并将其附加到Pytable.基本上,只需更新Pytable.我可以使用Pandas中的combine_first方法获取组合的DataFrame.Pytable下面是用虚拟数据创建的:
Run Code Online (Sandbox Code Playgroud)import pandas as pd import numpy as np import datetime as dt index = pd.DatetimeIndex(start = dt.datetime(2001,1,1,0,0), periods = 20000,freq='10T') data_in_pytable = pd.DataFrame(index=index,data=np.random.randn(20000,2),columns=['value_1','value_2']) data.to_hdf(r'C:\pytable.h5','test',mode='r+',append=True,complevel=9,complib='zlib')
因此创建了pytable.假设我有另一个dataFrame,我想用它来更新Pytable:
Run Code Online (Sandbox Code Playgroud)new_index = pd.DatetimeIndex(start = dt.datetime(2001,5,1,0,0), periods = 10000,freq='10T') data_to_update=pd.DataFrame(index=new_index,data=np.random.randn(10000,2),columns=['value_1','value_2']) store=pd.HDFStore(r'C:\pytable.h5',mode='r+',complevel=9,complib='zlib') store.append('test',store.select('test').combine_first(data_to_update)) store.close()
问题是PyTable保留原始值,不更新现有值.我现在有重复的条目(按索引),因为原始值不会被覆盖.
简介:如何使用其他DataFrame更新PyTable?
谢谢,Elv
我正在尝试编写一个服务器/客户端脚本,其中包含一个可以解决任务的服务器,以及执行它的多个工作者.问题是我的呼吸机有很多任务,它会在心跳中填满记忆.我尝试在绑定之前设置HWM,但没有成功.它只是在工作人员连接时继续发送消息,完全忽略已设置的HWM.我还有一个接收器,记录完成的任务.
server.py
import zmq
def ventilate():
context = zmq.Context()
# Socket to send messages on
sender = context.socket(zmq.PUSH)
sender.setsockopt(zmq.SNDHWM, 30) #Big messages, so I don't want to keep too many in queue
sender.bind("tcp://*:5557")
# Socket with direct access to the sink: used to syncronize start of batch
sink = context.socket(zmq.PUSH)
sink.connect("tcp://localhost:5558")
print "Sending tasks to workers…"
# The first message is "0" and signals start of batch
sink.send('0')
print "Sent starting signal"
while True:
sender.send("Message")
if __name__=="__main__":
ventilate()
Run Code Online (Sandbox Code Playgroud)
worker.py
import …Run Code Online (Sandbox Code Playgroud)