我想删除图例周围的灰色矩形.我尝试了各种方法,但都没有.
ggtheme <- 
theme(
axis.text.x = element_text(colour='black'),
axis.text.y = element_text(colour='black'),
panel.background = element_blank(),
panel.grid.minor = element_blank(),
panel.grid.major = element_blank(),
panel.border = element_rect(colour='black', fill=NA),
strip.background = element_blank(),
legend.justification = c(0, 1),
legend.position = c(0, 1),
legend.background = element_rect(colour = NA),
legend.key = element_rect(colour = "white", fill = NA),
legend.title = element_blank()
)
colors <- c("red", "blue")
df <- data.frame(year = c(1:10), value = c(10:19), gender = rep(c("male","female"),each=5))
ggplot(df, aes(x = year, y = value)) + geom_point(aes(colour=gender))  +
stat_smooth(method = "loess", formula …我试图重现Kostakis的纸张解决方案.在本文中,使用de Heligman-Pollard模型将删节死亡率表扩展为完整的生命表.该模型有8个参数必须安装.作者使用了改进的Gauss-Newton算法; 该算法(E04FDF)是NAG计算机程序库的一部分.Levenberg Marquardt不应该产生相同的参数集吗?我的代码或LM算法的应用有什么问题?
library(minpack.lm)
## Heligman-Pollard is used to expand an abridged table.
## nonlinear least squares algorithm is used to fit the parameters on nqx observed over 5 year   intervals (5qx)
AGE <- c(0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70)
MORTALITY <- c(0.010384069, 0.001469140, 0.001309318, 0.003814265, 0.005378395, 0.005985625,     0.006741766, 0.009325056, 0.014149626, 0.021601755, 0.034271934, 0.053836246, 0.085287751, 0.136549522, 0.215953304)
## The start parameters for de Heligman-Pollard Formula (Converged set a=0.0005893,b=0.0043836,c=0.0828424,d=0.000706,e=9.927863,f=22.197312,g=0.00004948,h=1.10003)
## I …r nonlinear-functions nonlinear-optimization model-fitting levenberg-marquardt