小编War*_*ang的帖子

如何在 Julia DataFrames 中进行紧密连接?

classA = Dataset(id = ["id1", "id2", "id3", "id4", "id5"],
                        mark = [50, 69.5, 45.5, 88.0, 98.5]);

grades = Dataset(mark = [0, 49.5, 59.5, 69.5, 79.5, 89.5, 95.5],
                        grade = ["F", "P", "C", "B", "A-", "A", "A+"]);
Run Code Online (Sandbox Code Playgroud)

我们可以使用 InMemorydatasets 包来进行 closejoin。

我们如何在 DataFrames 包中执行此方法。

closejoin(classA, grades, on = :mark)
Run Code Online (Sandbox Code Playgroud)
closejoin(classA, grades, on = :mark, direction=:forward, border=:nearest)
Run Code Online (Sandbox Code Playgroud)

以及如何在 R 中做到这一点?

r julia dataframes.jl

7
推荐指数
1
解决办法
147
查看次数

Julia 转置分组数据传递列选择器的元组

ds = Dataset([[1, 1, 1, 2, 2, 2],
                        ["foo", "bar", "monty", "foo", "bar", "monty"],
                        ["a", "b", "c", "d", "e", "f"],
                        [1, 2, 3, 4, 5, 6]], [:g, :key, :foo, :bar])

Run Code Online (Sandbox Code Playgroud)

在InmemoryDatasets中,transpose函数可以传递列选择器的Tuple。

transpose(groupby(ds, :g), (:foo, :bar), id = :key)
Run Code Online (Sandbox Code Playgroud)
Result:

g   foo bar monty   foo_1   bar_1   monty_1
identity    identity    identity    identity    identity    identity    identity
Int64?  String? String? String? Int64?  Int64?  Int64?
1   1   a   b   c   1   2   3
2   2   d   e   f   4   5   6

Run Code Online (Sandbox Code Playgroud)

问题:

我如何在 DataFrames.jl 中执行此操作? …

python r julia dataframes.jl

3
推荐指数
1
解决办法
163
查看次数

标签 统计

dataframes.jl ×2

julia ×2

r ×2

python ×1