我想知道如何scale_size() {ggplot2}在大小和颜色来自相同数据的图中着色size_scale .
例:
library(ggplot2)
df<-as.data.frame(cbind(rep(1:10,10),
rep(1:10,each=10),
rnorm(100)))
ggplot(df,aes(V1,V2))+
geom_point(aes(colour=V3,size=V3))+
scale_colour_gradient(low="grey", high="black")+
scale_size(range=c(1,10))
Run Code Online (Sandbox Code Playgroud)
如您所见V3,数据点的颜色和大小相同.如何将颜色渐变合并到大小比例(除了在Illustrator等程序中手动执行此操作...)?谢谢!
我创造了一个例子 data.table
library(data.table)
set.seed(1)
siz <- 10
my <- data.table(
AA=c(rep(NA,siz-1),"11/11/2001"),
BB=sample(c("wrong", "11/11/2001"),siz, prob=c(1000000,1), replace=T),
CC=sample(siz),
DD=rep("11/11/2001",siz),
EE=rep("HELLO", siz)
)
my[2,AA:=1]
NA wrong 3 11/11/2001 HELLO
1 wrong 2 11/11/2001 HELLO
NA wrong 6 11/11/2001 HELLO
NA wrong 10 11/11/2001 HELLO
NA wrong 5 11/11/2001 HELLO
NA wrong 7 11/11/2001 HELLO
NA wrong 8 11/11/2001 HELLO
NA wrong 4 11/11/2001 HELLO
NA wrong 1 11/11/2001 HELLO
11/11/2001 wrong 9 11/11/2001 HELLO
Run Code Online (Sandbox Code Playgroud)
如果我运行此代码
patt <- "^\\d\\d?/\\d\\d?/\\d{4}$"
sapply(my, function(x) (grepl(patt,x )))
Run Code Online (Sandbox Code Playgroud)
TRUE …
此问题与R中的应用成本函数有关
我想知道如何保存为每次迭代生成的系数optim.trace=TRUE使我能够获得打印的每次迭代的系数,但是如何保存它们?
示例代码:
set.seed(1)
X <- matrix(rnorm(1000), ncol=10) # some random data
Y <- sample(0:1, 100, replace=TRUE)
# Implement Sigmoid function
sigmoid <- function(z) {
g <- 1/(1+exp(-z))
return(g)
}
cost.glm <- function(theta,X) {
m <- nrow(X)
g <- sigmoid(X%*%theta)
(1/m)*sum((-Y*log(g)) - ((1-Y)*log(1-g)))
}
X1 <- cbind(1, X)
df <- optim(par=rep(0,ncol(X1)), fn = cost.glm, method='CG',
X=X1, control=list(trace=TRUE))
Run Code Online (Sandbox Code Playgroud)
哪个输出:
Run Code Online (Sandbox Code Playgroud)Conjugate gradients function minimizer Method: Fletcher Reeves tolerance used in gradient test=2.00089e-11 0 1 …