我从 Huggingface 训练了一个 LayoutLMv2 模型,当我尝试在单个图像上推断它时,它会给出运行时错误。其代码如下:
query = '/Users/vaihabsaxena/Desktop/Newfolder/labeled/Others/Two.pdf26.png'
image = Image.open(query).convert("RGB")
encoded_inputs = processor(image, return_tensors="pt").to(device)
outputs = model(**encoded_inputs)
preds = torch.softmax(outputs.logits, dim=1).tolist()[0]
pred_labels = {label:pred for label, pred in zip(label2idx.keys(), preds)}
pred_labels
Run Code Online (Sandbox Code Playgroud)
当我这样做时就会出现错误model(**encoded_inputs)。该processor目录在 Huggingface 中被称为目录,并与其他 API 一起按如下方式初始化:
feature_extractor = LayoutLMv2FeatureExtractor()
tokenizer = LayoutLMv2Tokenizer.from_pretrained("microsoft/layoutlmv2-base-uncased")
processor = LayoutLMv2Processor(feature_extractor, tokenizer)
Run Code Online (Sandbox Code Playgroud)
该模型的定义和训练如下:
model = LayoutLMv2ForSequenceClassification.from_pretrained(
"microsoft/layoutlmv2-base-uncased", num_labels=len(label2idx)
)
model.to(device);
optimizer = AdamW(model.parameters(), lr=5e-5)
num_epochs = 3
for epoch in range(num_epochs):
print("Epoch:", epoch)
training_loss = 0.0
training_correct = 0
#put the …Run Code Online (Sandbox Code Playgroud) python machine-learning computer-vision huggingface-transformers