我会在全球的每一个步骤都蒙受训练损失。但是我确实想在张量板上的图'lossxx'中添加评估损失。怎么做?
类MyHook(tf.train.SessionRunHook):
def after_run(self,run_context,run_value):
_session = run_context.session
_session.run(_session.graph.get_operation_by_name('acc_op'))
def my_model(功能,标签,模式):
...
logits = tf.layers.dense(net,3,激活=无)
预测类= tf.argmax(logits,1)
如果模式== tf.estimator.ModeKeys.PREDICT:
预测= {
'class':predicted_classes,
'问题':tf.nn.softmax(logits)
}
返回tf.estimator.EstimatorSpec(mode,projections = predictions)
#计算损失。
损失= tf.losses.sparse_softmax_cross_entropy(labels =标签,logits = logits)
acc,acc_op = tf.metrics.accuracy(标签=标签,预测= predicted_classes)
tf.identity(acc_op,'acc_op')
loss_sum = tf.summary.scalar('lossxx',loss)
precision_sum = tf.summary.scalar('accuracyxx',acc)
merg = tf.summary.merge_all()
#创建培训项目。
如果mode == tf.estimator.ModeKeys.TRAIN:
优化器= tf.train.AdagradOptimizer(learning_rate = 0.1)
train_op = optimizer.minimize(损失,global_step = tf.train.get_global_step())
返回tf.estimator.EstimatorSpec(mode,loss = loss,train_op = train_op,
training_chief_hooks = [
tf.train.SummarySaverHook(save_steps = 10,output_dir ='。/ model',summary_op = merg)])
返回tf.estimator.EstimatorSpec(
模式,损失=损失,eval_metric_ops = {'accuracy':(acc,acc_op)}
)
classifier.train(input_fn … 我需要在debian 6.0中安装as86.但是,我在debian-6.0-DVD中找不到as86.那么,在哪里可以找到as86?
首先我在Ubuntu 12.04上安装sctp
sudo apt-get install libsctp-dev lksctp-tools
然后在我的.c文件中,我包括:
#include < netinet/in.h >
#include < netinet/sctp.h >
#include < sys/socket.h >
#include < stdlib.h >
#include < unistd.h >
Run Code Online (Sandbox Code Playgroud)
howerver,当我用gcc编译时,结果是:
undefined reference to `sctp_recvmsg'
undefined reference to `sctp_get_no_strms'
undefined reference to `sctp_sendmsg'
Run Code Online (Sandbox Code Playgroud)
怎么了?