我正在按照本教程实现Backpropagation算法.但是,我坚持实施此算法的动力.
没有Momentum,这是权重更新方法的代码:
def update_weights(network, row, l_rate):
for i in range(len(network)):
inputs = row[:-1]
if i != 0:
inputs = [neuron['output'] for neuron in network[i - 1]]
for neuron in network[i]:
for j in range(len(inputs)):
neuron['weights'][j] += l_rate * neuron['delta'] * inputs[j]
neuron['weights'][-1] += l_rate * neuron['delta']
Run Code Online (Sandbox Code Playgroud)
以下是我的实施:
def updateWeights(network, row, l_rate, momentum=0.5):
for i in range(len(network)):
inputs = row[:-1]
if i != 0:
inputs = [neuron['output'] for neuron in network[i-1]]
for neuron in network[i]:
for j in range(len(inputs)): …
Run Code Online (Sandbox Code Playgroud) python algorithm backpropagation neural-network gradient-descent
有没有办法使用像这样的 LINQ命令从SearchOption中排除某些目录
string path = "C:\SomeFolder";
var s1 = Directory.GetFiles(path , "*.*", SearchOption.AllDirectories);
var s2 = Directory.GetDirectories(path , "*.*", SearchOption.AllDirectories);
Run Code Online (Sandbox Code Playgroud)
该路径由Sub1和Sub2文件夹组成,其中包含某些文件.我需要将它们从目录搜索中排除.
谢谢
这项工作:
string[] exceptions = new string[] { "c:\\SomeFolder\\sub1",
"c:\\SomeFolder\\sub2" };
var s1 = Directory.GetFiles("c:\\x86", "*.*",
SearchOption.AllDirectories).Where(d => exceptions.All(e =>
!d.StartsWith(e)));
Run Code Online (Sandbox Code Playgroud)
这有助于例外
我想删除仅包含小于 10 且大于 25 的值的行。我的示例数据框将如下所示:
a b c
1 2 3
4 5 16
11 24 22
26 50 65
Run Code Online (Sandbox Code Playgroud)
预期输出:
a b c
1 2 3
4 5 16
26 50 65
Run Code Online (Sandbox Code Playgroud)
因此,如果该行包含任何小于 10 或大于 25 的值,则该行将保留在数据帧中,否则,需要将其删除。
有什么方法可以用 Pandas 实现这一点,而不是遍历所有行?