这个问题集中在numpy上.
我有一组矩阵,它们共享相同数量的列并具有不同的行数.我们称它们为A,B,C,D等,让它们的尺寸为IaxK IbxK,IcxK等
我想要的是有效地计算IaxIbxIc ...张量P定义如下:P(ia,ib,ic,id,即......)=\sum_k A(ia,k)B(ib,k)C (IC,K)...
因此,如果我有两个因素,我最终得到简单的矩阵产品.
当然,我可以通过外部产品"手动"计算,例如:
def parafac(factors,components=None):
ndims = len(factors)
ncomponents = factors[0].shape[1]
total_result=array([])
if components is None:
components=range(ncomponents)
for k in components:
#for each component (to save memory)
result = array([])
for dim in range(ndims-1,-1,-1):
#Augments model with next dimension
current_dim_slice=[slice(None,None,None)]
current_dim_slice.extend([None]*(ndims-dim-1))
current_dim_slice.append(k)
if result.size:
result = factors[dim].__getitem__(tuple(current_dim_slice))*result[None,...]
else:
result = factors[dim].__getitem__(tuple(current_dim_slice))
if total_result.size:
total_result+=result
else:
total_result=result
return total_result
Run Code Online (Sandbox Code Playgroud)
不过,我想要一些计算效率更高的东西,比如依赖内置的numpy函数,但我找不到相关的函数,有人可以帮助我吗?
干杯,谢谢