我正在将模型训练为:
with tf.Graph().as_default():
with tf.Session(config=tf.ConfigProto(allow_soft_placement = True)) as sess:
K.set_session(sess)
tf.train.create_global_step()
#with tf.device('/gpu:0:'):
m = GAReader.Model(nlayers, data.vocab_size, data.num_chars, W_init,
nhidden, embed_dim, dropout, train_emb,
char_dim, use_feat, gating_fn, words).build_network()
m.compile(optimizer=tf.train.AdamOptimizer(0.01),
loss=tf.keras.losses.categorical_crossentropy,
metrics=[tf.keras.metrics.categorical_accuracy])
tensorboard = TensorBoardCustom(log_dir="logs", sess=sess)
m.fit_generator(generator=batch_loader_train, steps_per_epoch=len(batch_loader_train.batch_pool), epochs=100, callbacks=[tensorboard])
Run Code Online (Sandbox Code Playgroud)
我定义了一个自定义回调,将keras.callbacks.Tensorboard扩展为:
class TensorBoardCustom(TensorBoard):
def __init__(self, log_dir, sess, **kwargs):
super(TensorBoardCustom, self).__init__(log_dir, **kwargs)
self.sess = sess
def on_batch_end(self, batch, logs={}):
summary = tf.summary.merge_all()
writer = tf.summary.FileWriter(self.log_dir)
s = self.sess.run(summary)
writer.add_summary(s, batch)
writer.close()
super(TensorBoardCustom, self).on_batch_end(batch, logs)
Run Code Online (Sandbox Code Playgroud)
我添加一个新的摘要为:
l_docin = tf.keras.layers.Input(shape=(None,))
with tf.name_scope('summaries'):
table = tf.contrib.lookup.index_to_string_table_from_tensor( …Run Code Online (Sandbox Code Playgroud)