我是 mlflow 的初学者,尝试使用 Anaconda 3 在本地进行设置。我在 anaconda 中创建了一个新环境,并在其中安装了 mlflow 和 sklearn。现在我使用 jupyter Notebook 来运行 mlflow 的示例代码。
'''
import os
import warnings
import sys
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import train_test_split
from sklearn.linear_model import ElasticNet
from urllib.parse import urlparse
import mlflow
import mlflow.sklearn
import logging
logging.basicConfig(level=logging.WARN)
logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore")
np.random.seed(40)
mlflow.set_tracking_uri("file:///Users/Swapnil/Documents/LocalPython/MLFLowDemo/mlrun")
mlflow.get_tracking_uri()
mlflow.get_experiment
#experiment_id = mlflow.create_experiment("Mlflow_demo")
experiment_id = mlflow.create_experiment("Demo3")
experiment = mlflow.get_experiment(experiment_id)
print("Name: {}".format(experiment.name))
print("Experiment_id: {}".format(experiment.experiment_id))
print("Artifact Location: {}".format(experiment.artifact_location)) …Run Code Online (Sandbox Code Playgroud)