我有以下代码,其中我对不同的 mtry 和 min_n 进行一些网格搜索。我知道如何提取提供最高准确度的参数(请参阅第二个代码框)。如何提取训练数据集中每个特征的重要性?我在网上找到的指南显示了如何使用“last_fit”仅在测试数据集中执行此操作。例如指南:https: //www.tidymodels.org/start/case-study/#data-split
set.seed(seed_number)
data_split <- initial_split(node_strength,prop = 0.8,strata = Group)
train <- training(data_split)
test <- testing(data_split)
train_folds <- vfold_cv(train,v = 10)
rfc <- rand_forest(mode = "classification", mtry = tune(),
min_n = tune(), trees = 1500) %>%
set_engine("ranger", num.threads = 48, importance = "impurity")
rfc_recipe <- recipe(data = train, Group~.)
rfc_workflow <- workflow() %>% add_model(rfc) %>%
add_recipe(rfc_recipe)
rfc_result <- rfc_workflow %>%
tune_grid(train_folds, grid = 40, control = control_grid(save_pred = TRUE),
metrics = metric_set(accuracy))
Run Code Online (Sandbox Code Playgroud)
。
best <-
rfc_result …Run Code Online (Sandbox Code Playgroud)