小编Jer*_*ias的帖子

多重回归glm与相互作用的LC50 / LD50置信区间

我有一个准二项式glm,其中包含两个连续的解释变量(假设为“ LogPesticide”和“ LogFood”),并且存在交互作用。我想在不同食物量(例如最小和最大食物值)下以置信区间计算农药的LC50。如何做到这一点?

示例:首先,我生成一个数据集。

mydata <- data.frame(
            LogPesticide = rep(log(c(0, 0.1, 0.2, 0.4, 0.8, 1.6) + 0.05), 4),
            LogFood = rep(log(c(1, 2, 4, 8)), each = 6)
          )

set.seed(seed=16) 

growth <- function(x, a = 1, K = 1, r = 1) {            # Logistic growth function. a = position of turning point
  Fx <- (K * exp(r * (x - a))) / (1 + exp(r * (x - a))) # K = carrying capacity
  return(Fx)                                            # r = growth rate …
Run Code Online (Sandbox Code Playgroud)

r glm logistic-regression

5
推荐指数
1
解决办法
892
查看次数

R中的lm()先验对比

我在设置先验对比方面遇到了麻烦,并希望寻求一些帮助.以下代码应给出与因子水平"d"的两个正交对比.

Response <- c(1,3,2,2,2,2,2,2,4,6,5,5,5,5,5,5,4,6,5,5,5,5,5,5)
A <- factor(c(rep("c",8),rep("d",8),rep("h",8)))
contrasts(A) <- cbind("d vs h"=c(0,1,-1),"d vs c"=c(-1,1,0))
summary.lm(aov(Response~A))
Run Code Online (Sandbox Code Playgroud)

我得到的是:

Call:
aov(formula = Response ~ A)

Residuals:
   Min         1Q     Median         3Q        Max 
-1.000e+00 -3.136e-16 -8.281e-18 -8.281e-18  1.000e+00 

Coefficients:
        Estimate Std. Error t value Pr(>|t|)    
(Intercept)   4.0000     0.1091  36.661  < 2e-16 ***
Ad vs h      -1.0000     0.1543  -6.481 2.02e-06 ***
Ad vs c       2.0000     0.1543  12.961 1.74e-11 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard …
Run Code Online (Sandbox Code Playgroud)

r contrast lm

2
推荐指数
1
解决办法
2666
查看次数

标签 统计

r ×2

contrast ×1

glm ×1

lm ×1

logistic-regression ×1