小编cor*_*orp的帖子

批量输入显示 3d,但得到 2d、2d 张量

我有这个训练循环

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    model.train()
    for batch, (X, y) in enumerate(dataloader):
        X, y = torch.stack(X).to(device), torch.stack(y).to(device)

        # Compute prediction error
        pred = model(X)
        loss = loss_fn(pred, y)

        # Backpropagation
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if batch % 100 == 0:
            loss, current = loss.item(), batch * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")
Run Code Online (Sandbox Code Playgroud)

和这个lstm:

import torch
import torch.nn as nn
import pandas as pd
import numpy as np
class BELT_LSTM(nn.Module):

    def __init__(self, input_size, hidden_size, num_layers):
        super (BELT_LSTM, self).__init__()
        self.hidden_size = …
Run Code Online (Sandbox Code Playgroud)

pytorch tensor

3
推荐指数
1
解决办法
6215
查看次数

标签 统计

pytorch ×1

tensor ×1