如何找到每个系数的p值(显着性)?
lm = sklearn.linear_model.LinearRegression()
lm.fit(x,y)
Run Code Online (Sandbox Code Playgroud) 这段代码:
xedges = np.arange(self.min_spread - 0.5, self.max_spread + 1.5)
yedges = np.arange(self.min_span - 0.5, self.max_span + 1.5)
h, xe, ye = np.histogram2d(
self.spread_values
, self.span_values
, [xedges, yedges]
)
fig = plt.figure(figsize=(7,3))
ax = fig.add_subplot(111)
x, y = np.meshgrid(xedges, yedges)
ax.pcolormesh(x, y, h)
Run Code Online (Sandbox Code Playgroud)
给出了这个错误:
TypeError: Dimensions of C (55, 31) are incompatible with X (56) and/or Y (32); see help(pcolormesh)
Run Code Online (Sandbox Code Playgroud)
如果有55x31箱,网格中的56x32箱边缘是否正确?
我们需要通过距离矩阵,所以不需要计算任何额外的距离,对吗?我错过了什么?
这里的文档:http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.cluster.hierarchy.linkage.html