在我的模型中,我有一个用于 1 列特征数组的归一化层。我假设这给出了 1 ndim 输出:
single_feature_model = keras.models.Sequential([
single_feature_normalizer,
layers.Dense(1)
])
Run Code Online (Sandbox Code Playgroud)
正常化步骤:
single_feature_normalizer = preprocessing.Normalization(axis=None)
single_feature_normalizer.adapt(single_feature)
Run Code Online (Sandbox Code Playgroud)
我收到的错误是:
ValueError Traceback (most recent call last)
<ipython-input-98-22191285d676> in <module>()
2 single_feature_model = keras.models.Sequential([
3 single_feature_normalizer,
----> 4 layers.Dense(1) # Linear Model
5 ])
/usr/local/lib/python3.7/dist-packages/keras/engine/input_spec.py in assert_input_compatibility(input_spec, inputs, layer_name)
225 ndim = x.shape.rank
226 if ndim is not None and ndim < spec.min_ndim:
--> 227 raise ValueError(f'Input {input_index} of layer "{layer_name}" '
228 'is incompatible with the layer: '
229 f'expected min_ndim={spec.min_ndim}, ' …Run Code Online (Sandbox Code Playgroud)