我有以下列结构:
\n[9] "\xe2\x82\xac10-\xe2\x82\xac20" "\xe2\x82\xac10-\xe2\x82\xac60" "\xe2\x82\xac6-\xe2\x82\xac12" "\xe2\x82\xac3-\xe2\x82\xac10" \n[737] "CHF 11-CHF 36" "CHF 3-CHF 10" "CHF 4-CHF 9" "CHF 6-CHF 25"\nRun Code Online (Sandbox Code Playgroud)\n我想将列中的值转换为包含平均值的数值:
\n[9] 15 35 9 6.5\n[737] 23.5 6.5 6.5 15.5\nRun Code Online (Sandbox Code Playgroud)\n复制代码:
\nexample <- c("\xe2\x82\xac10-\xe2\x82\xac20","\xe2\x82\xac10-\xe2\x82\xac60","\xe2\x82\xac6-\xe2\x82\xac12","\xe2\x82\xac3-\xe2\x82\xac10",\n "CHF 11-CHF 36","CHF 3-CHF 10","CHF 4-CHF 9","CHF 6-CHF 25")\ndt <- data.table(example)\nRun Code Online (Sandbox Code Playgroud)\n 我从 anaconda 环境启动了 cmd-shell。然后我就进去了pyspark。这加载了交互式 Spark-shell。然后我尝试了以下命令:
l = [('Alice', 1)]
spark.createDataFrame(l).collect()
Run Code Online (Sandbox Code Playgroud)
这导致了:
22/02/14 19:16:03 ERROR Executor: Exception in task 5.0 in stage 2.0 (TID 21)
java.io.IOException: Cannot run program "python3": CreateProcess error=2, Das System kann die angegebene Datei nicht finden
at java.lang.ProcessBuilder.start(ProcessBuilder.java:1048)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:166)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:108)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:121)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:162)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at …Run Code Online (Sandbox Code Playgroud) 我有以下数字:
arr = [4, 5, 5, 5, 6, 6, 4, 1, 4, 4, 3, 6, 6, 3, 6, 1, 4, 5, 5, 5]
Run Code Online (Sandbox Code Playgroud)
我想创建一个列表理解,它将与二维列表数组中的所有相同值相匹配,例如:
[[1, 1], [3, 3], [4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6]]
Run Code Online (Sandbox Code Playgroud)
我尝试过类似的东西:
listArr = sorted(arr)
Run Code Online (Sandbox Code Playgroud)
不幸的是我不知道如何将排序后的数字放入二维列表数组中。
我只想绘制一次特定簇的平均值文本。
\n\n但我想要的是这样的:
\n\n复制代码:
\nprice_l <- rep(c(\'\xe2\x82\xac\xe2\x82\xac-\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \'\xe2\x82\xac\xe2\x82\xac-\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \'\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \'\xe2\x82\xac\xe2\x82\xac-\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \'\xe2\x82\xac\xe2\x82\xac-\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \n \'\xe2\x82\xac\xe2\x82\xac-\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \'\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \'\xe2\x82\xac\xe2\x82\xac-\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \'\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \'\xe2\x82\xac\xe2\x82\xac-\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \n \'\xe2\x82\xac\xe2\x82\xac-\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \'\xe2\x82\xac\xe2\x82\xac-\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \'\xe2\x82\xac\xe2\x82\xac-\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \'\xe2\x82\xac\xe2\x82\xac-\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \n \'\xe2\x82\xac\xe2\x82\xac-\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \'\xe2\x82\xac\xe2\x82\xac-\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \'\xe2\x82\xac\xe2\x82\xac-\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \'\xe2\x82\xac\xe2\x82\xac-\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \'\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\',\'\xe2\x82\xac\', \'\xe2\x82\xac\', \n \'\xe2\x82\xac\', \'\xe2\x82\xac\',\'\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\xe2\x82\xac\', \'\xe2\x82\xac\'),100)\n\navg_r <- rep(c(4.5, 3.5, 4.0, 4.0, 4.0, 3.5, 4.5, 4.0, 3.0, 4.0, \n 3.0, 5.0, 4.5, 4.0, 3.0,\n 3.5, 4.5, 3.5, 3.5, 4.0, 3.0, 4.0, 4.0, 2.5, 4.5),100)\n\n\nsub.df <- data.frame(price_l, avg_r)\n\n\nsub.df %>% \n group_by(price_l) %>%\n mutate(mean = mean(avg_r)) %>%\n ungroup() %>%\n ggplot(sub.df, mapping=aes(price_l, …Run Code Online (Sandbox Code Playgroud)