我知道具有默认访问控制的类成员可以在包级别访问,但我对包级访问实际意味着什么感到困惑.如果可以在包级别访问默认成员,那么在下面的示例中,我不应该在类Test2中看到它吗?1级
package pkg1;
public class Test {
int i=0;
}
Run Code Online (Sandbox Code Playgroud)
2级
import pkg1.Test;
public class Test2 {
void get(){
Test t = new Test();
t.i=0;
}
}
Run Code Online (Sandbox Code Playgroud)
请帮我理解这个概念.提前致谢.
当我将输入图像的高度和宽度保持在362X362以下时,出现负尺寸大小错误。我很惊讶,因为此错误通常是由于错误的输入尺寸引起的。我没有发现数字或行和列会导致错误的任何原因。以下是我的代码-
batch_size = 32
num_classes = 7
epochs=50
height = 362
width = 362
train_datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'train',
target_size=(height, width),
batch_size=batch_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
'validation',
target_size=(height, width),
batch_size=batch_size,
class_mode='categorical')
base_model = InceptionV3(weights='imagenet', include_top=False, input_shape=
(height,width,3))
x = base_model.output
x = Conv2D(32, (3, 3), use_bias=True, activation='relu') (x) #line2
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Conv2D(64, (3, 3), activation='relu') (x) #line3
x = MaxPooling2D(pool_size=(2, 2))(x)
x = …Run Code Online (Sandbox Code Playgroud) python neural-network deep-learning conv-neural-network keras