我刚刚开始学习 Pytorch 并创建了我的第一个 CNN。该数据集包含 3360 张 RGB 图像,我将它们转换为[3360, 3, 224, 224]
张量。数据和标签在dataset(torch.utils.data.TensorDataset)
. 下面是训练代码。
def train_net():
dataset = ld.load()
data_iter = Data.DataLoader(dataset, batch_size=168, shuffle=True)
net = model.VGG_19()
summary(net, (3, 224, 224), device="cpu")
loss_func = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9, dampening=0.1)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.1)
for epoch in range(5):
print("epoch:", epoch + 1)
train_loss = 0
for i, data in enumerate(data_iter, 0):
x, y = data
print(x.dtype)
optimizer.zero_grad()
out = net(x)
loss = loss_func(out, y)
loss.backward()
optimizer.step() …
Run Code Online (Sandbox Code Playgroud)