小编use*_*330的帖子

PyTorch:为什么要创建同一类型图层的多个实例?

此代码来自 PyTorch 转换器:

    self.linear1 = Linear(d_model, dim_feedforward, **factory_kwargs)
    self.dropout = Dropout(dropout)
    self.linear2 = Linear(dim_feedforward, d_model, **factory_kwargs)
    self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
    self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
    self.norm3 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
    self.dropout1 = Dropout(dropout)
    self.dropout2 = Dropout(dropout)
    self.dropout3 = Dropout(dropout)
Run Code Online (Sandbox Code Playgroud)

为什么他们要添加self.dropout1, ...2,...3self.dropout已经存在并且是完全相同的功能时?

self.linear1另外,( , self.linear2) 和 之间有什么区别self.linear

python instance pytorch dropout

5
推荐指数
1
解决办法
1669
查看次数

标签 统计

dropout ×1

instance ×1

python ×1

pytorch ×1