pandasdf=pd.DataFrame(
{
"A": [1, 2, 3, 4, 5],
"fruits": ["banana", "banana", "apple", "apple", "banana"],
"B": [5, 4, 3, 2, 1],
"cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
"optional": [28, 300, None, 2, -30],
}
)
pandasdf.groupby(["fruits","cars"])['B'].sum().unstack()
Run Code Online (Sandbox Code Playgroud)
如何在极坐标中创建等效的真值表?
类似于下表的真值表
df=pl.DataFrame(
{
"A": [1, 2, 3, 4, 5],
"fruits": ["banana", "banana", "apple", "apple", "banana"],
"B": [5, 4, 3, 2, 1],
"cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
"optional": [28, 300, None, 2, -30],
}
)
df.groupby(["fruits","cars"]).agg(pl.col('B').sum()) #->truthtable
Run Code Online (Sandbox Code Playgroud)
代码的效率很重要,因为数据集太大(与 apriori 算法一起使用)
Polars 中的 unstack 函数是不同的,pd.crosstab …