小编Mar*_*mes的帖子

ORDER BY 的意外结果

我有以下查询:

SELECT    
    D.[Year] AS [Year]
    , D.[Month] AS [Month]
    , CASE
        WHEN f.Dept IN ('XSD') THEN 'Marketing'
        ELSE f.Dept 
    END AS DeptS 
    , COUNT(DISTINCT f.OrderNo) AS CountOrders
FROM Sales.LocalOrders AS l WITH 
INNER JOIN Sales.FiscalOrders AS f 
    ON l.ORDER_NUMBER = f.OrderNo
INNER JOIN Dimensions.Date_Dim AS D 
    ON CAST(D.[Date] AS DATE) = CAST(f.OrderDate AS DATE)
WHERE YEAR(f.OrderDate) = 2019
AND f.Dept IN ('XSD', 'PPM', 'XPP')
GROUP BY 
    D.[Year]
    , D.[Month]
    , f.Dept 
ORDER BY 
    D.[Year] ASC
    , D.[Month] ASC
Run Code Online (Sandbox Code Playgroud)

我得到以下结果,ORDER …

sql t-sql sql-server

4
推荐指数
1
解决办法
112
查看次数

计算两个日期之间的平均天数

我有下表:

团队 电话号码 订单号 通话日期 订购日期
TM1 2222222222 26699443 2021-01-28 2021-02-05
TM1 1111111111 26699450 2021-01-22 2021-01-22
TM2 5555555555 26699466 2021-02-22 2021-02-23
TM2 5555555555 26699467 2021-01-22 2021-02-01
TM3 7777777777 26699488 2020-12-10 2021-01-03

我想计算每个团队每个月从电话到订单的平均时间。这是我的查询:

SELECT 
    Team,
    MONTH(CallDate),
    AVG(DATEDIFF(day,CallDate,OrderDate))
FROM MyTab AS C 
GROUP BY Team, MONTH(CallDate)
Run Code Online (Sandbox Code Playgroud)

我想计算 CallDate 和 OrderDate 之间的差异,然后为每个团队应用每个月的平均值。

sql t-sql sql-server average

2
推荐指数
1
解决办法
88
查看次数

相当于 HIVE 查询中的 MERGE

我有以下 SQL 查询:

MERGE INTO member_staging x
USING (SELECT member_id, first_name, last_name, rank FROM members) y
ON (x.member_id  = y.member_id)
WHEN MATCHED THEN
    UPDATE SET x.first_name = y.first_name, 
                        x.last_name = y.last_name, 
                        x.rank = y.rank
    WHERE x.first_name <> y.first_name OR 
           x.last_name <> y.last_name OR 
           x.rank <> y.rank 
WHEN NOT MATCHED THEN
    INSERT(x.member_id, x.first_name, x.last_name, x.rank)  
    VALUES(y.member_id, y.first_name, y.last_name, y.rank);
Run Code Online (Sandbox Code Playgroud)

我想在 Hive 查询中实现它,HIVE 中是否有 MERGE JOIN 的等效项?

sql hive hiveql

2
推荐指数
1
解决办法
4849
查看次数

标签 统计

sql ×3

sql-server ×2

t-sql ×2

average ×1

hive ×1

hiveql ×1