我在数据科学和 pytorch 方面没有那么丰富的经验,并且我在实现至少任何东西方面都遇到了问题(目前我正在为分割任务制作一个神经网络)。存在某种内存问题,尽管它没有任何意义 - 每个纪元占用的内存都比上升时要少得多
import torch
from torch import nn
from torch.autograd import Variable
from torch.nn import Linear, ReLU6, CrossEntropyLoss, Sequential, Conv2d, MaxPool2d, Module, Softmax, Softplus ,BatchNorm2d, Dropout, ConvTranspose2d
import torch.nn.functional as F
from torch.nn import LeakyReLU,Tanh
from torch.optim import Adam, SGD
import numpy as np
import cv2 as cv
def train(epoch,model,criterion, x_train, y_train, loss_val):
model.train()
tr_loss = 0
# getting the training set
x_train, y_train = Variable(x_train), Variable(y_train)
# converting the data into GPU format
# clearing the …
Run Code Online (Sandbox Code Playgroud)