小编Kat*_*ing的帖子

训练时预计每个通道的值超过 1 个,获得输入大小 torch.Size([1, **])

我在使用BatchNorm1d时遇到错误,代码:

\n
##% first I set a model\nclass net(nn.Module):\n    def __init__(self, max_len, feature_linear, rnn, input_size, hidden_size, output_dim, num__rnn_layers, bidirectional, batch_first=True, p=0.2):\n        super(net, self).__init__()\n        self.max_len = max_len\n        self.feature_linear = feature_linear\n        self.input_size = input_size\n        self.hidden_size = hidden_size\n        self.bidirectional = bidirectional\n        self.num_directions = 2 if bidirectional == True else 1\n        self.p = p\n        self.batch_first = batch_first\n        self.linear1 = nn.Linear(max_len, feature_linear) \n        init.kaiming_normal_(self.linear1.weight, mode='fan_in')\n        self.BN1 = BN(feature_linear) \n        \n    def forward(self, xb, seq_len_crt):\n        rnn_input = torch.zeros(xb.shape[0], self.feature_linear, self.input_size)\n        for i in range(self.input_size): \n            out …
Run Code Online (Sandbox Code Playgroud)

pytorch batch-normalization

2
推荐指数
1
解决办法
9519
查看次数

标签 统计

batch-normalization ×1

pytorch ×1