我是 pytorch 和深度学习的新手
我的数据集 53502 x 58,
我的代码有问题
model = nn.Sequential(
nn.Linear(58,64),
nn.ReLU(),
nn.Linear(64,32),
nn.ReLU(),
nn.Linear(32,16),
nn.ReLU(),
nn.Linear(16,2),
nn.LogSoftmax(1)
)
criterion = nn.NLLLoss()
optimizer = optim.AdamW(model.parameters(), lr = 0.0001)
Run Code Online (Sandbox Code Playgroud)
epoch = 500
train_cost, test_cost = [], []
for i in range(epoch):
model.train()
cost = 0
for feature, target in trainloader:
output = model(feature) #feedforward
loss = criterion(output, target) #loss
loss.backward() #backprop
optimizer.step() #update weight
optimizer.zero_grad() #zero grad
cost += loss.item() * feature.shape[0]
train_cost.append(cost / len(train_set))
with torch.no_grad():
model.eval()
cost = …
Run Code Online (Sandbox Code Playgroud)