小编and*_*rew的帖子

类型错误:线性():参数“输入”(位置 1)必须是张量,而不是 str

所以我一直在尝试研究我在 github 上发现的一些 bert 示例,这是我第一次尝试使用 bert 并查看它是如何工作的。使用的呼吸即时消息如下:https : //github.com/prateekjoshi565/Fine-Tuning-BERT/blob/master/Fine_Tuning_BERT_for_Spam_Classification.ipynb

我使用了不同的数据集,但是我遇到了问题 TypeError: linear(): argument 'input' (position 1) must be Tensor, not str" 老实说,我不知道我做错了什么。有没有人可以帮助我?

我一直在使用的代码如下:

# convert class weights to tensor
weights= torch.tensor(class_wts,dtype=torch.float)
weights = weights.to(device)

# loss function
cross_entropy  = nn.NLLLoss(weight=weights) 

# number of training epochs
epochs = 10

def train():
  
  model.train()

  total_loss, total_accuracy = 0, 0
  
  # empty list to save model predictions
  total_preds=[]
  
  # iterate over batches
  for step,batch in enumerate(train_dataloader):
    
    # progress update after every 50 batches. …
Run Code Online (Sandbox Code Playgroud)

python pytorch bert-language-model

2
推荐指数
1
解决办法
2077
查看次数

标签 统计

bert-language-model ×1

python ×1

pytorch ×1