有人可以向我解释name_scopeTensorFlow中的工作原理吗?
假设我有以下代码:
import tensorflow as tf
g1 = tf.Graph()
with g1.as_default() as g:
with g.name_scope( "g1" ) as scope:
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)
tf.reset_default_graph()
g2 = tf.Graph()
with g2.as_default() as g:
with g.name_scope( "g2" ) as scope:
matrix1 = tf.constant([[4., 4.]])
matrix2 = tf.constant([[5.],[5.]])
product = tf.matmul(matrix1, matrix2)
tf.reset_default_graph()
with tf.Session( graph = g1 ) as sess:
result = sess.run( product )
print( result )
Run Code Online (Sandbox Code Playgroud)
当我运行此代码时,我收到以下错误消息:
Tensor Tensor("g2/MatMul:0", shape=(1, 1), dtype=float32) …Run Code Online (Sandbox Code Playgroud) tensorflow ×1