我正在使用sklearn并且亲和力传播有问题.我已经构建了一个输入矩阵,我不断收到以下错误.
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
Run Code Online (Sandbox Code Playgroud)
我跑了
np.isnan(mat.any()) #and gets False
np.isfinite(mat.all()) #and gets True
Run Code Online (Sandbox Code Playgroud)
我试过用
mat[np.isfinite(mat) == True] = 0
Run Code Online (Sandbox Code Playgroud)
删除无限值但这也不起作用.我该怎么做才能摆脱矩阵中的无限值,以便我可以使用亲和传播算法?
我正在使用anaconda和python 2.7.9.
我使用pickle在python 3上转储文件,我使用pickle在python 2上加载文件,出现ValueError.
那么,python 2 pickle无法加载python 3 pickle转储的文件?
如果我想要它?怎么做?
我是第一次使用 BigQuery。
client.list_rows(table, max_results = 5).to_dataframe();
Run Code Online (Sandbox Code Playgroud)
每当我使用 to_dataframe() 时,它都会引发此错误:
ValueError:请安装“db-dtypes”包才能使用此功能。
我发现了这个类似的问题(几乎完全相同),但我无法理解如何实施他们提出的解决方案。
我的输入只是一个包含339732行和两列的csv文件:
我正在尝试在堆叠的LSTM模型上训练我的数据:
data_dim = 29
timesteps = 8
num_classes = 2
model = Sequential()
model.add(LSTM(30, return_sequences=True,
input_shape=(timesteps, data_dim))) # returns a sequence of vectors of dimension 30
model.add(LSTM(30, return_sequences=True)) # returns a sequence of vectors of dimension 30
model.add(LSTM(30)) # return a single vector of dimension 30
model.add(Dense(1, activation='softmax'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
model.summary()
model.fit(X_train, y_train, batch_size = 400, epochs = 20, verbose = 1)
Run Code Online (Sandbox Code Playgroud)
这会引发错误:
回溯(最近一次调用最后一次):文件"first_approach.py",第80行,在model.fit中(X_train,y_train,batch_size = 400,epochs = 20,verbose = 1)
ValueError:检查模型输入时出错:预期lstm_1_input有3个维度,但是有形状的数组(339732,29)
我尝试使用重塑我的输入,X_train.reshape((1,339732, 29))但它没有显示错误:
ValueError:检查模型输入时出错:期望lstm_1_input具有形状(无,8,29)但是具有形状的数组(1,339732,29) …
为什么ValueError: malformed node or string当我将以下格式的数据传递到“parse_webhook”函数时会收到此错误消息?
谢谢!
webhook_data = {"side": "BUY","key": "8234023409fa3242309sdfasdf903024917325"}
def parse_webhook(webhook_data):
"""
:param webhook_data: POST data from tradingview, as a string.
:return: Dictionary version of string.
"""
data = ast.literal_eval(webhook_data)
return data
Run Code Online (Sandbox Code Playgroud)
我得到错误:
File "C:\Users\User\anaconda3\lib\ast.py", line 55, in _convert_num
raise ValueError('malformed node or string: ' + repr(node))
ValueError: malformed node or string: {'side': 'BUY', 'key': '8234023409fa3242309sdfasdf903024917325'}
Run Code Online (Sandbox Code Playgroud) 我从flask函数传递一个列表到另一个函数,并获得此值错误.
发送端的代码:
@app.route('/process', methods=['POST'])
def process():
name = request.form['name']
comment = request.form['comment']
wickets = request.form['wickets']
ga = request.form['ga']
ppballs = request.form['ppballs']
overs = request.form['overs']
score = [name,comment,wickets,ga,ppballs,overs]
results = []
results = eval_score(score)
print results
Run Code Online (Sandbox Code Playgroud)
接收方结束:
def ml_model(data):
col = pd.DataFrame(data,columns=['runs','balls', 'wickets', 'ground_average', 'pp_balls_left', 'total_overs'])
predicted = predictor(col)
Run Code Online (Sandbox Code Playgroud)
错误跟踪:
...
line 1598, in dispatch_request
return self.view_functions[rule.endpoint](**req.view_args)
File "/Users/sbk/guestbook/guestbook.py", line 26, in process
results = eval_score(score)
File "/Users/sbk/guestbook/eval_score.py", line 6, in eval_score
col = pd.DataFrame(data,columns=['runs','balls', 'wickets', 'ground_average', 'pp_balls_left', 'total_overs'])
File "/Users/sbk/anaconda2/lib/python2.7/site- …Run Code Online (Sandbox Code Playgroud) 我正在使用 Python3.10 来了解 OpenAI 的 GYM (0.25.1),并将健身房的环境设置为'FrozenLake-v1(代码如下)。
根据文档,调用env.step()应返回一个包含 4 个值(观察、奖励、完成、信息)的元组。但是,当相应地运行我的代码时,我收到一个 ValueError:
有问题的代码:
observation, reward, done, info = env.step(new_action)
Run Code Online (Sandbox Code Playgroud)
错误:
3 new_action = env.action_space.sample()
----> 5 observation, reward, done, info = env.step(new_action)
7 # here's a look at what we get back
8 print(f"observation: {observation}, reward: {reward}, done: {done}, info: {info}")
ValueError: too many values to unpack (expected 4)
Run Code Online (Sandbox Code Playgroud)
添加一个变量可以修复错误:
a, b, c, d, e = env.step(new_action)
print(a, b, c, d, e)
Run Code Online (Sandbox Code Playgroud)
输出:
5 0 …Run Code Online (Sandbox Code Playgroud) 当尝试遵循以下在 Python 中使用 corr() 方法的练习时,我遇到了这个非常奇怪的错误
https://www.geeksforgeeks.org/python-pandas-dataframe-corr/
具体来说,当我尝试运行以下代码时:df.corr(method ='pearson')
错误消息没有提供任何线索。我认为 corr() 方法应该自动忽略字符串和空值等。
Traceback (most recent call last):
File "<pyshell#6>", line 1, in <module>
df.corr(method='pearson')
File "C:\Users\d.o\AppData\Local\Programs\Python\Python311\Lib\site-packages\pandas\core\frame.py", line 10059, in corr
mat = data.to_numpy(dtype=float, na_value=np.nan, copy=False)
File "C:\Users\d.o\AppData\Local\Programs\Python\Python311\Lib\site-packages\pandas\core\frame.py", line 1838, in to_numpy
result = self._mgr.as_array(dtype=dtype, copy=copy, na_value=na_value)
File "C:\Users\d.o\AppData\Local\Programs\Python\Python311\Lib\site-packages\pandas\core\internals\managers.py", line 1732, in as_array
arr = self._interleave(dtype=dtype, na_value=na_value)
File "C:\Users\d.o\AppData\Local\Programs\Python\Python311\Lib\site-packages\pandas\core\internals\managers.py", line 1794, in _interleave
result[rl.indexer] = arr
ValueError: could not convert string to float: 'Avery Bradley'
Run Code Online (Sandbox Code Playgroud) 想知道 pd.melt 是否支持熔化多个列。我有以下示例试图将 value_vars 作为列表列表,但出现错误:
ValueError: Location based indexing can only have [labels (MUST BE IN THE INDEX), slices of labels (BOTH endpoints included! Can be slices of integers if the index is integers), listlike of labels, boolean] types
使用熊猫 0.23.1。
df = pd.DataFrame({'City': ['Houston', 'Austin', 'Hoover'],
'State': ['Texas', 'Texas', 'Alabama'],
'Name':['Aria', 'Penelope', 'Niko'],
'Mango':[4, 10, 90],
'Orange': [10, 8, 14],
'Watermelon':[40, 99, 43],
'Gin':[16, 200, 34],
'Vodka':[20, 33, 18]},
columns=['City', 'State', 'Name', 'Mango', 'Orange', 'Watermelon', 'Gin', 'Vodka'])
Run Code Online (Sandbox Code Playgroud)
期望的输出:
City …Run Code Online (Sandbox Code Playgroud) 我想在 google Colab 上挂载谷歌驱动器,我正在使用这个命令来挂载驱动器
from google.colab import drive
drive.mount('/content/drive/')
Run Code Online (Sandbox Code Playgroud)
但我收到此错误
ValueError Traceback (most recent call last)
<ipython-input-45-9667a744255b> in <module>()
1 from google.colab import drive
----> 2 drive.mount('content/drive/')
/usr/local/lib/python3.6/dist-packages/google/colab/drive.py in
mount(mountpoint, force_remount)
99 raise ValueError('Mountpoint must either be a directory or not exist')
100 if '/' in mountpoint and not _os.path.exists(_os.path.dirname(mountpoint)):
--> 101 raise ValueError('Mountpoint must be in a directory that exists')
102 except:
103 d.terminate(force=True)
ValueError: Mountpoint must be in a directory that exists
Run Code Online (Sandbox Code Playgroud) valueerror ×10
python ×9
pandas ×3
python-2.7 ×2
correlation ×1
flask ×1
keras ×1
lstm ×1
malformed ×1
melt ×1
openai-gym ×1
pickle ×1
python-3.x ×1
scikit-learn ×1