我有一个包含以下详细信息的 venv:
我尝试使用以下方法安装tensorflow-addons:
pip install -q --no-deps tensorflow-addons~=0.6
但后来我不断收到以下错误:
找不到满足 tensorflow-addons~=0.6 要求的版本(来自版本:)未找到 tensorflow-addons~=0.6 的匹配分布
您使用的是 pip 版本 18.0,但版本 19.3.1 可用。您应该考虑通过“python -m pip install --upgrade pip”命令进行升级。
我还尝试了其他版本的 tensorflow-addons,例如0.4.0, 0.5.0, ...,但没有奏效。
我已经安装了 keras,然后是 tensorflow。
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
Run Code Online (Sandbox Code Playgroud)
当我执行 keras 顺序模型时,我收到一条错误消息,指出
导入错误引用(最近一次调用)
导入错误:无法从 'keras.models' 导入名称 'Sequential' (C:\Users\murthy.p\AppData\Local\Continuum\anaconda4\lib\site-packages\keras\models__init__ .py)
我尝试按照以下链接安装 tensorflow 和 docker https://www.tensorflow.org/install/docker
我将 tensorflow 图像从 tensorflow Hub 下载到 docker 中,然后我尝试测试 tensorflow python 脚本。然后我在下面收到错误消息。我认为它与 GPU 相关,但我刚刚下载了 tensorflow/tensorflow:last 并且我不需要 GPU 版本。我想如果我使用 docker + tensorflow 我不会得到任何错误。有没有人能告诉我这有什么问题。。
2020-02-15 08:24:32.759681: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer.so.6'; dlerror: libnvinfer.so.6: cannot open shared object file: No such file or directory
2020-02-15 08:24:32.759786: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer_plugin.so.6'; dlerror: libnvinfer_plugin.so.6: cannot open shared object file: No such file or directory
2020-02-15 08:24:32.759798: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:30] Cannot dlopen some TensorRT libraries. If …Run Code Online (Sandbox Code Playgroud) 我试图在训练使用keraswithtensorflow作为后端的深度学习模型时产生可重复的结果。
我浏览了这个文件:https : //keras.io/getting-started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development来设置 numpy 的、python 的和 tf 的随机种子train.py我用于训练的文件。
现在,这个文件从其他两个模块utils.py和model.py. 在这两个文件中,我都有import numpy as np和import tensorflow as tf在顶部。我的问题是 - 从不同模块导入和设置随机种子如何工作?
a) 我需要在导入语句后在每个文件中设置随机种子吗?
b) 或者,我是否只需要在 中设置这些种子train.py并在这些设置种子命令之后从其他模块执行所有导入?
c)tf.set_random_seed(1)以后import tensorflow as tf还需要做吗?
d)tf.set_random_seed(1)即使我不导入 tensorflow 或 keras 而只是从 keras 导入层,我是否需要设置?
我已经在 keras 中训练了我自己的图像分类模型模型,并将其转换为 tflite 然后我想通过 tensorflow lite 在 android 中使用该模型。为此,我使用了一个 github 项目来直接获取该项目的应用程序链接:
但是我在 logcat 中遇到了这个错误:
2020-03-30 14:50:48.747 27421-27421/com.amitshekhar.tflite E/AndroidRuntime: FATAL EXCEPTION: main
Process: com.amitshekhar.tflite, PID: 27421
java.lang.IllegalArgumentException: Cannot copy between a TensorFlowLite tensor with shape [2] and a Java object with shape [1, 2].
at org.tensorflow.lite.Tensor.throwIfShapeIsIncompatible(Tensor.java:342)
at org.tensorflow.lite.Tensor.throwIfDataIsIncompatible(Tensor.java:305)
at org.tensorflow.lite.Tensor.copyTo(Tensor.java:183)
at org.tensorflow.lite.NativeInterpreterWrapper.run(NativeInterpreterWrapper.java:166)
at org.tensorflow.lite.Interpreter.runForMultipleInputsOutputs(Interpreter.java:311)
at org.tensorflow.lite.Interpreter.run(Interpreter.java:272)
at com.amitshekhar.tflite.TensorFlowImageClassifier.recognizeImage(TensorFlowImageClassifier.java:70)
at com.amitshekhar.tflite.MainActivity$1.onImage(MainActivity.java:75)
at com.wonderkiln.camerakit.EventDispatcher$1.run(EventDispatcher.java:42)
at android.os.Handler.handleCallback(Handler.java:873)
at android.os.Handler.dispatchMessage(Handler.java:99)
at android.os.Looper.loop(Looper.java:224)
at android.app.ActivityThread.main(ActivityThread.java:7094)
at java.lang.reflect.Method.invoke(Native Method)
at com.android.internal.os.RuntimeInit$MethodAndArgsCaller.run(RuntimeInit.java:536)
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:928)
Run Code Online (Sandbox Code Playgroud)
对此的任何帮助将不胜感激,此外,除了我的模型的输入大小和我自己的 tflite …
当我通过 Conda 安装 tensorflow-gpu 时;它给了我以下输出:
conda install tensorflow-gpu
Collecting package metadata (current_repodata.json): done
Solving environment: done
## Package Plan ##
environment location: /home/psychotechnopath/anaconda3/envs/DeepLearning3.6
added / updated specs:
- tensorflow-gpu
The following packages will be downloaded:
package | build
---------------------------|-----------------
_tflow_select-2.1.0 | gpu 2 KB
cudatoolkit-10.1.243 | h6bb024c_0 347.4 MB
cudnn-7.6.5 | cuda10.1_0 179.9 MB
cupti-10.1.168 | 0 1.4 MB
tensorflow-2.1.0 |gpu_py36h2e5cdaa_0 4 KB
tensorflow-base-2.1.0 |gpu_py36h6c5654b_0 155.9 MB
tensorflow-gpu-2.1.0 | h0d30ee6_0 3 KB
------------------------------------------------------------
Total: 684.7 MB
The following NEW packages …Run Code Online (Sandbox Code Playgroud) I tried CNN model on two classes and got 80% but when i tried the same model with 4 classes i got very bad result. What is the reason pls help. The model of CNN i used is:
model= Sequential()
model.add(Conv2D(64,(3,3),input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64,(3,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64,(3,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
#opt = SGD( lr=0.01)
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
history = model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples//batch_size,
epochs=epochs,
validation_data = validation_generator,
validation_steps = validation_generator.samples // batch_size,
) …Run Code Online (Sandbox Code Playgroud) 我正在尝试创建一个简单的 CNN 来对 MNIST 数据集中的图像进行分类。该模型达到了可接受的精度,但我注意到该模型在每个 epoch 中仅在 1875 张图像上进行了训练。可能是什么原因造成的?如何修复?
model=models.Sequential()
model.add(layers.Conv2D(filters=32,kernel_size=(3,3),activation='relu',input_shape=(28,28,1)))
model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Conv2D(filters=64,kernel_size=(3,3),activation='relu'))
model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Conv2D(filters=64,kernel_size=(3,3),activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64,activation='relu'))
model.add(layers.Dense(10,activation='softmax'))
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 26, 26, 32) 320
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 13, 13, 32) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 11, 11, 64) 18496
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 3, 3, 64) 36928
_________________________________________________________________
flatten (Flatten) (None, 576) 0
_________________________________________________________________
dense (Dense) (None, 64) 36928
_________________________________________________________________ …Run Code Online (Sandbox Code Playgroud) 我正在学习 Keras 和 TensorFlow,我正在尝试运行一个包含 keras.utils.plot_model 指令的示例代码,但他没有向我展示图形,代码的另一部分工作得很好,但最后,我看不到程序应该显示的图形。我有 2 天的时间试图解决这个问题,但我做不到。这是代码:
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
inputs = keras.Input(shape=(784,))
print(inputs.shape)
print(inputs.dtype)
dense = layers.Dense(64, activation="relu")
x = dense(inputs)
x = layers.Dense(64, activation="relu")(x)
outputs = layers.Dense(10)(x)
model = keras.Model(inputs=inputs, outputs=outputs, name="mnist_model")
print(model.summary())
keras.utils.plot_model(model, "my_first_model.png")
Run Code Online (Sandbox Code Playgroud)
这是模型结果,没有显示图形:
(None, 784)
<dtype: 'float32'>
2020-06-14 13:24:33.233826: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
Model: "mnist_model"
_________________________________________________________________
Layer (type) Output …Run Code Online (Sandbox Code Playgroud) 我正在尝试在我实施该ReduceLROnPlateau方法的卷积神经网络中实施学习率调度,但我遇到了这个错误。
我的进口清单
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import seaborn as sns
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
np.random.seed(0)
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import itertools
from keras.utils.np_utils import to_categorical # convert to one-hot-encoding
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ReduceLROnPlateau
from keras.activations import selu
Run Code Online (Sandbox Code Playgroud)
我用来实现它的代码:
reduce_lr = ReduceLROnPlateau(monitor='val_loss', …