我正在尝试使用 roberta 变压器和预训练模型,但我不断收到此错误:
ImportError:
AutoModelForSequenceClassification requires the PyTorch library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
Run Code Online (Sandbox Code Playgroud)
这是我的代码:
# Tasks:
# emoji, emotion, hate, irony, offensive, sentiment
# stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary
task='sentiment'
MODEL = f"cardiffnlp/twitter-roberta-base-{task}"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
# download label mapping
labels=[]
mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt"
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
model.save_pretrained(MODEL)
labels=[]
mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt"
with urllib.request.urlopen(mapping_link) as f:
html = f.read().decode('utf-8').split("\n")
csvreader …Run Code Online (Sandbox Code Playgroud) 是否有可能对像 Roberta 这样的小得多的语言模型(例如客户服务数据集)进行微调,并获得与使用部分数据集提示 GPT-4 所获得的结果一样好的结果?
经过微调的 Roberta 模型能否学会以对话方式遵循指令,至少对于这样的小领域?
有没有任何论文或文章可以根据经验探讨这个问题?
language-model roberta roberta-language-model gpt-4 large-language-model