我设置了一个hbase集群来存储来自opentsdb的数据.最近由于重启了一些节点,hbase丢失了表"tsdb".我仍然可以在hbase的主节点页面上,但是当我点击它时,它给了我一个tableNotFoundException
org.apache.hadoop.hbase.TableNotFoundException: tsdb
at org.apache.hadoop.hbase.client.HConnectionManager$HConnectionImplementation.locateRegionInMeta(HConnectionManager.java:952)
at org.apache.hadoop.hbase.client.HConnectionManager$HConnectionImplementation.locateRegion(HConnectionManager.java:818)
at org.apache.hadoop.hbase.client.HConnectionManager$HConnectionImplementation.locateRegion(HConnectionManager.java:782)
at org.apache.hadoop.hbase.client.HTable.finishSetup(HTable.java:249)
at org.apache.hadoop.hbase.client.HTable.<init>(HTable.java:213)
at org.apache.hadoop.hbase.client.HTable.<init>(HTable.java:171)
......
Run Code Online (Sandbox Code Playgroud)
我进入了hbase shell,尝试找到'tsdb'表,但得到了类似的消息
hbase(main):018:0> scan 'tsdb'
ROW COLUMN+CELL
ERROR: Unknown table tsdb!
Run Code Online (Sandbox Code Playgroud)
但是当我试图重新创建这个表时,hbase shell告诉我该表已经存在...
hbase(main):013:0> create 'tsdb', {NAME => 't', VERSIONS => 1, BLOOMFILTER=>'ROW'}
ERROR: Table already exists: tsdb!
Run Code Online (Sandbox Code Playgroud)
我还可以在hbase shell中列出该表
hbase(main):001:0> list
TABLE
tsdb
tsdb-uid
2 row(s) in 0.6730 seconds
Run Code Online (Sandbox Code Playgroud)
看一下日志,我发现这应该是我的问题的原因
2012-05-14 12:06:22,140 WARN org.apache.hadoop.hbase.client.HConnectionManager$HConnectionImplementation: Encountered problems when prefetch META table:
org.apache.hadoop.hbase.TableNotFoundException: Cannot find row in .META. for table: tsdb, row=tsdb,,99999999999999
at org.apache.hadoop.hbase.client.MetaScanner.metaScan(MetaScanner.java:157)
at …Run Code Online (Sandbox Code Playgroud) 如果有人对选择HBase作为OpenTSDB的数据存储引擎有所了解,我真的很感激吗?
还考虑了其他选择,例如Whisper(Graphite front-end + Carbon persistence)?
像HBase这样的面向列的数据库如何成为时间序列数据的更好选择?
我们正在尝试使用HBase来存储时间序列数据.我们目前的模型将时间序列存储为单元格中的版本.这意味着单元可能最终存储数百万个版本,并且此时间序列上的查询将使用HBase中 Get类上可用的setTimeRange方法检索一系列版本.
例如
{
"row1" : {
"columnFamily1" : {
"column1" : {
1 : "1",
2 : "2"
},
"column2" : {
1 : "1"
}
}
}
}
Run Code Online (Sandbox Code Playgroud)
这是在HBase中存储时间序列数据的合理模型吗?
将数据存储在多列中的备用模型(可以跨列查询)还是更合适的行?
它们都是开源的分布式时间序列数据库,用于度量的OpenTSDB,用于度量的InfluxDB和没有外部依赖性的事件,在另一个基于HBase的OpenTSDB上.
他们之间还有其他任何比较吗?
如果我想实时存储和查询指标,没有基于时间序列的恶化损失,那会更好吗?
我在HBase上使用OpenTSDB(虚拟盒上的伪分布式Hadoop)以非常高的负载(~50,000记录/秒)发送数据.系统工作了一段时间,但突然下降了.我终止了OpenTSDB和HBase.不幸的是,我再也不能把它们搞砸了.每次我尝试运行HBase和OpenTSDB时,都会显示错误日志.在这里我列出了日志:
RegionServer的:
2015-07-01 18:15:30,752 INFO [sync.3] wal.FSHLog: Slow sync cost: 112 ms, current pipeline: [192.168.56.101:50010]
2015-07-01 18:15:41,277 INFO [regionserver/node1.vmcluster/192.168.56.101:16201.logRoller] wal.FSHLog: Rolled WAL /hbase/WALs/node1.vmcluster,16201,1435738612093/node1.vmcluster%2C16201%2C1435738612093.default.1435742101122 with entries=3841, filesize=123.61 MB; new WAL /hbase/WALs/node1.vmcluster,16201,1435738612093/node1.vmcluster%2C16201%2C1435738612093.default.1435742141109
2015-07-01 18:15:41,278 INFO [regionserver/node1.vmcluster/192.168.56.101:16201.logRoller] wal.FSHLog: Archiving hdfs://node1.vmcluster:9000/hbase/WALs/node1.vmcluster,16201,1435738612093/node1.vmcluster%2C16201%2C1435738612093.default.1435742061805 to hdfs://node1.vmcluster:9000/hbase/oldWALs/node1.vmcluster%2C16201%2C1435738612093.default.1435742061805
2015-07-01 18:15:42,249 INFO [MemStoreFlusher.0] regionserver.HRegion: Started memstore flush for tsdb,,1435740133573.1a692e2668a2b4a71aaf2805f9b00a72., current region memstore size 132.20 MB
2015-07-01 18:15:42,381 INFO [MemStoreFlusher.1] regionserver.HRegion: Started memstore flush for tsdb,,1435740133573.1a692e2668a2b4a71aaf2805f9b00a72., current region memstore size 133.09 MB
2015-07-01 18:15:42,382 WARN [MemStoreFlusher.1] regionserver.DefaultMemStore: Snapshot called again without …Run Code Online (Sandbox Code Playgroud) 我正在使用Qt4将一些数据点发布到OpenTSDB服务器,该服务器不支持分块的HTTP请求.
代码基本上是这样的:
QNetworkRequest request(m_url);
request.setHeader(QNetworkRequest::ContentTypeHeader, QString("application/json"));
request.setHeader(QNetworkRequest::ContentLengthHeader, jsonRequest.toAscii().size());
m_networkAccessManager.post(request, jsonRequest.toAscii());
Run Code Online (Sandbox Code Playgroud)
jsonRequest是一个包含数据点的QString.这段代码不时被调用以将数据上传到服务器,它通常可以正常工作.但是,有时我从openTSDB收到错误,指出"不支持Chunked请求.".这似乎发生在请求变得更大时(并且更大,我的意思是一些KB的数据).
编辑:当问题出现时我已经完成了请求的tcpdump,事实上它并没有被看作是分块的:
POST /api/put HTTP/1.1
Content-Type: application/json
Content-Length: 14073
Connection: Keep-Alive
Accept-Encoding: gzip
Accept-Language: en,*
User-Agent: Mozilla/5.0
Host: 192.168.xx.xxx:xxxx
[{"metric":"slt.reader.temperature","timestamp":1420736269427,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736280628,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736291637,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736302748,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736313840,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736325011,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736336039,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736347182,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736358210,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736369372,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736380401,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tags_read","timestamp":1420736385286,"value":0,"tags":{"sltId":"5036","readerId":"1","antenna":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tags_read","timestamp":1420736385286,"value":10,"tags":{"sltId":"5036","readerId":"1","antenna":"2","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tags_read","timestamp":1420736385286,"value":7,"tags":{"sltId":"5036","readerId":"1","antenna":"3","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tags_read","timestamp":1420736385287,"value":6,"tags":{"sltId":"5036","readerId":"1","antenna":"4","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tag_transactions","timestamp":1420736385287,"value":13,"tags":{"sltId":"5036","readerId":"1","antenna":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tag_transactions","timestamp":1420736385287,"value":99,"tags":{"sltId":"5036","readerId":"1","antenna":"2","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tag_transactions","timestamp":1420736385287,"value":102,"tags":{"sltId":"5036","readerId":"1","antenna":"3","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tag_transactions","timestamp":1420736385287,"value":93,"tags":{"sltId":"5036","readerId":"1","antenna":"4","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.transactionsNotDeciphered","timestamp":1420736385287,"value":0,"tags":{"sltId":"5036","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736391436,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736402608,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736413642,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736424676,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736435823,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736446850,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736458007,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736469060,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736480207,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736491418,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736502620,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736513638,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736524682,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736535712,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736546742,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736557834,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736568858,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736579932,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736590966,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736601993,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736613183,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736624357,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736635387,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736646414,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736657493,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736668624,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736679743,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tags_read","timestamp":1420736685286,"value":0,"tags":{"sltId":"5036","readerId":"1","antenna":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tags_read","timestamp":1420736685286,"value":8,"tags":{"sltId":"5036","readerId":"1","antenna":"2","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tags_read","timestamp":1420736685286,"value":9,"tags":{"sltId":"5036","readerId":"1","antenna":"3","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tags_read","timestamp":1420736685295,"value":5,"tags":{"sltId":"5036","readerId":"1","antenna":"4","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tag_transactions","timestamp":1420736685295,"value":4,"tags":{"sltId":"5036","readerId":"1","antenna":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tag_transactions","timestamp":1420736685295,"value":88,"tags":{"sltId":"5036","readerId":"1","antenna":"2","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tag_transactions","timestamp":1420736685295,"value":130,"tags":{"sltId":"5036","readerId":"1","antenna":"3","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tag_transactions","timestamp":1420736685296,"value":123,"tags":{"sltId":"5036","readerId":"1","antenna":"4","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.transactionsNotDeciphered","timestamp":1420736685296,"value":0,"tags":{"sltId":"5036","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736690786,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736701910,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736712968,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736723999,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736735075,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736746106,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736757266,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736768455,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736779473,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736790606,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736801633,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736812713,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736823740,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736834856,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736845958,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736857103,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736868216,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736879292,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736890320,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736901503,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736912608,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736923761,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736934850,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736946033,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736957061,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736968223,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736979256,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tags_read","timestamp":1420736985284,"value":0,"tags":{"sltId":"5036","readerId":"1","antenna":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tags_read","timestamp":1420736985285,"value":16,"tags":{"sltId":"5036","readerId":"1","antenna":"2","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tags_read","timestamp":1420736985285,"value":9,"tags":{"sltId":"5036","readerId":"1","antenna":"3","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tags_read","timestamp":1420736985285,"value":11,"tags":{"sltId":"5036","readerId":"1","antenna":"4","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tag_transactions","timestamp":1420736985285,"value":9,"tags":{"sltId":"5036","readerId":"1","antenna":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tag_transactions","timestamp":1420736985285,"value":162,"tags":{"sltId":"5036","readerId":"1","antenna":"2","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tag_transactions","timestamp":1420736985285,"value":166,"tags":{"sltId":"5036","readerId":"1","antenna":"3","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.tag_transactions","timestamp":1420736985285,"value":157,"tags":{"sltId":"5036","readerId":"1","antenna":"4","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.transactionsNotDeciphered","timestamp":1420736985286,"value":0,"tags":{"sltId":"5036","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420736990353,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420737001532,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420737012658,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420737023691,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420737034823,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420737045906,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420737056942,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}},{"metric":"slt.reader.temperature","timestamp":1420737068032,"value":56,"tags":{"sltId":"5036","readerId":"1","host":"xxxxxxxxxxxxxxxxx"}}]HTTP/1.1 400 Bad Request
Content-Length: 1080
Content-Type: text/html; charset=UTF-8
Date: Thu, 08 Jan 2015 17:18:43 GMT
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"><html><head><meta http-equiv=content-type content="text/html;charset=utf-8"><title>Bad Request</title>
<style><!--
body{font-family:arial,sans-serif;margin-left:2em}A.l:link{color:#6f6f6f}A.u:link{color:green}.subg{background-color:#e2f4f7}.fwf{font-family:monospace;white-space:pre-wrap}//--></style></head>
<body text=#000000 bgcolor=#ffffff><table border=0 cellpadding=2 cellspacing=0 width=100%><tr><td rowspan=3 width=1% nowrap><b><font color=#c71a32 size=10>T</font><font color=#00a189 size=10>S</font><font color=#1a65b7 size=10>D</font> </b><td> </td></tr><tr><td class=subg><font color=#507e9b><b>Looks like it's your fault this …Run Code Online (Sandbox Code Playgroud) 我正在尝试在Ubuntu上安装OpenTSDB,我正在关注此文档.但运行这些命令后:
git clone git://github.com/OpenTSDB/opentsdb.git
cd opentsdb
Run Code Online (Sandbox Code Playgroud)
运行此命令是提供以下控制台输出:
./build.sh
Run Code Online (Sandbox Code Playgroud)
控制台输出:
seed-admin@seedadmin-Inspiron-3847:~/Abharthan/opentsdb$ sudo ./build.sh
+ test -f configure
+ ./bootstrap
./bootstrap: 17: exec: autoreconf: not found
Run Code Online (Sandbox Code Playgroud)
有人可以建议问题是什么.
我正在构建一个一次性的智能家居数据收集盒.它预计将运行在raspberry-pi级机器(~1G RAM)上,每天处理大约200K数据点(每个64位int).我们一直在使用vanilla MySQL,但性能开始崩溃,特别是对于给定时间间隔内的条目数量的查询.
据我了解,这基本上就是为时间序列数据库设计的.如果有的话,关于我的情况的不寻常的事情是音量相对较低,可用的RAM量也是如此.
快速浏览维基百科可以看出OpenTSDB,InfluxDB和BlueFlood.OpenTSDB建议使用4G的RAM,但这可能适用于高容量设置.InfluxDB实际上提到了传感器读数,但我找不到很多关于需要什么样的资源的信息.
好的,所以这是我的实际问题:是否有明显的红旗会使这些系统中的任何一个不适合我描述的项目?
我意识到这是一个火焰的邀请,所以我指望人们把它保持在明亮和乐于助人的一面.提前谢谢了!
如何从我的spark流工作发送指标以打开tsdb数据库?我试图在Grafana中使用open tsdb作为数据源.你可以帮我一些我可以开始的参考资料.
我确实看到开放的tsdb记者在这里做类似的工作.如何整合Spark流媒体作业的指标来使用它?有没有简单的选择呢.
我面临一个问题:过程工厂的数据库.采样率为50 ms时,最多有50,000个传感器.所有测量值都需要存储至少3年,并且必须支持实时查询(即用户可以查看延迟小于1秒的历史数据).我最近阅读了一篇关于时间序列数据库的文章,现有很多选项:OpenTSDB,KairosDB,InfluxDB,......
我很困惑哪一个适合这个目的?任何人都知道这个请帮助我!
更新15.06.25
今天我运行一个基于OpenTSDB的测试.我使用Virtual Box创建了一个由3个CentOS x64 VM组成的集群(1个主服务器,2个从服务器).主机配置为8 GB RAM,核心i5.主VM配置为3 GB RAM,从站配置为1.5 GB RAM.我编写了一个python程序来向OpenTSDB发送数据,如下所示:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("192.168.10.55", 4242))
start_time = time.time()
start_epoch = 1434192418;
for x in range(0, 1000000):
curr_epoch = start_epoch + x
tag1 = "put TAG_1 %d 12.9 stt=good\n" % (curr_epoch)
tag2 = "put TAG_2 %d 12.9 stt=good\n" % (curr_epoch)
tag3 = "put TAG_3 %d 12.9 stt=good\n" % (curr_epoch)
tag4 = "put TAG_4 %d 12.9 stt=good\n" % (curr_epoch)
tag5 = "put TAG_5 %d 12.9 …Run Code Online (Sandbox Code Playgroud) opentsdb ×10
hbase ×6
hadoop ×3
influxdb ×3
apache-spark ×1
graphite ×1
http ×1
kairosdb ×1
mysql ×1
phoenix ×1
raspberry-pi ×1
time-series ×1
ubuntu ×1