我正在对来自约90项研究的数据进行元分析.这对如何以可访问的格式显示数据以便发布提出了一些挑战.我想仅显示不同荟萃分析的总体效应大小估计值,并排除研究特定的估计值.我可以使用metan包并添加summaryonly命令在Stata中执行此操作.是否可以使用metafor包(或任何其他元分析R包)抑制森林图输出中的研究级效应大小?
我一直在使用该addpoly命令来添加子样本的效果大小估计,如包文档中所述,例如:
res.a <- rma(n1i = Intervention_n, n2i = Control_n, m1i = intervention_d, m2i = control_d, sd1i = intervention_d_sd,
sd2i = control_d_sd, measure="MD", intercept=TRUE, data = Dataset.a, vtype="LS", method="DL", level=95,
digits=4, subset = (exclude==0 & child=="No"), slab=paste(Dataset.a$Label, Dataset.a$Year, sep=", "))
addpoly(res.a, row=7.5, cex=.75, font=3, mlab="Random effects model for subgroup")
Run Code Online (Sandbox Code Playgroud) 所以我正在使用meta.for包进行荟萃分析R.我正准备在科学期刊上发表数据,我想在我的森林地块中添加p值,但科学注释格式为
x10-04Run Code Online (Sandbox Code Playgroud) 而不是标准
e-04
然而,争论ilab的forest功能不接受expression一流的对象,但仅矢量
这是一个例子:
library(metafor)
data(dat.bcg)
## REM
res <- rma(ai = tpos, bi = tneg, ci = cpos, di = cneg, data = dat.bcg,
measure = "RR",
slab = paste(author, year, sep = ", "), method = "REML")
# MADE UP PVALUES
set.seed(513)
p.vals <- runif(nrow(dat.bcg), 1e-6,0.02)
# Format pvalues so only those bellow 0.01 are scientifically notated
p.vals <- ifelse(p.vals < 0.01,
format(p.vals,digits = 3,scientific …Run Code Online (Sandbox Code Playgroud) library(pacman)
pacman::p_load(metafor,readxl,metaviz,MetaAnalyser,rio)
#library(readxl,metaviz,MetaAnalyser,rio)
#Effektstärke
Bor1 <- data.frame(read_excel("Borenstein_1.xls"))
Bor1 <- escalc(measure = "SMD", m1i=mw.t, m2i = mw.c, sd1i = sd.t, sd2i = sd.c, n1i= n.t, n2i= n.c, data= Bor1)
#Heterogenitätstests Fixed/Random-Effects / Test for heterogeneity
fe.mod <- rma(yi = yi, vi = vi, measure = "SMD", method = "FE", slab = Studie, data = Bor1)
forest(fe.mod, showweights = TRUE)
re.mod <- rma(yi = yi, vi = vi, measure = "SMD", method = "DL", slab = Studie, data = Bor1)
forest(re.mod, showweights …Run Code Online (Sandbox Code Playgroud)