我试图在序数数据上运行贝叶斯多级累积模型,并正在阅读brms在线文档。我的模型看起来像
model <- brm(bf(y ~ Condition + (Condition|item) + (Condition|subject)),
data = df,
family = cumulative(link="probit", threshold="flexible"),
chains=4,cores=4,iter=2000, prior = prior)
Run Code Online (Sandbox Code Playgroud)
bf()我看到有些文档在指定公式时没有该函数,但有些文档有。有人可以向我解释一下bf()这里在做什么吗?谢谢!
我正在编写一个JAGS脚本(分层贝叶斯模型),其中事件的时间被建模为两个进程之间的竞争.
观察: time是事件的测量时间.
模型:具有高斯率的两个过程 - 无论哪个过程首先触发事件.
目标:估算两个过程的比率.
model{
# Priors
mu1 ~ dnorm( 0,1 ) # rate of one process
mu2 ~ dnorm( 0,1 ) # rate of other process
sigma1 <- 1 # variability in rate
sigma2 <- 0.1 # variability in rate
# Observations
for (i in 1:N)
rate1[i] ~ dnorm( mu1, sigma1 ) # Sample the two
rate2[i] ~ dnorm( mu2, sigma2 ) # racing processes.
rmax[i] <- max( rate1[i], rate2[i] ) …Run Code Online (Sandbox Code Playgroud) 我正在尝试运行以下模型,但在编译过程中失败:
import numpy as np
import pymc3 as pm
def sample_data(G=1, K=2):
# mean proportion ([0,1]) for each g
p_g = np.random.beta(2, 2, size=G)
# concentration around each p_g
c_g = np.random.lognormal(mean=0.5, sigma=1, size=G)
# reparameterization for standard Beta(a,b)
a_g = c_g * p_g / np.sqrt(p_g**2 + (1.-p_g)**2)
b_g = c_g*(1.-p_g) / np.sqrt(p_g**2 + (1.-p_g)**2)
# for each p_g, sample K proportions
p_gk = np.random.beta(a_g[:, np.newaxis], b_g[:, np.newaxis], size=(G, K))
return p_gk
# Data size
G = 3
K = …Run Code Online (Sandbox Code Playgroud) python theano pymc3 hierarchical-bayesian probabilistic-programming
我想优化 lightgbm 模型的 HPO。我使用贝叶斯优化过程来做到这一点。遗憾的是我的算法未能收敛。
磁力RE
import warnings
import pandas as pd
import time
import numpy as np
warnings.filterwarnings("ignore")
import lightgbm as lgb
from bayes_opt import BayesianOptimization
import sklearn as sklearn
import pyprojroot
from sklearn.metrics import roc_auc_score, mean_squared_error
from sklearn.model_selection import KFold, cross_val_score
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()
train = pd.DataFrame(housing['data'], columns=housing['feature_names'])
train_y = train.pop('MedInc')
params = {
"objective" : "regression", "bagging_fraction" : 0.8, "bagging_freq": 1,
"min_child_samples": 20, "reg_alpha": 1, "reg_lambda": 1,"boosting": "gbdt",
"learning_rate" : …Run Code Online (Sandbox Code Playgroud) python mathematical-optimization hierarchical-bayesian lightgbm
我有一个看起来像下面的数据集(显示前5行).CPA是来自不同广告航班的实验(处理)的观察结果.航班在广告系列中按层次分组.
campaign_uid flight_uid treatment CPA
0 0C2o4hHDSN 0FBU5oULvg control -50.757370
1 0C2o4hHDSN 0FhOqhtsl9 control 10.963426
2 0C2o4hHDSN 0FwPGelRRX exposed -72.868952
3 0C5F8ZNKxc 0F0bYuxlmR control 13.356081
4 0C5F8ZNKxc 0F2ESwZY22 control 141.030900
5 0C5F8ZNKxc 0F5rfAOVuO exposed 11.200450
Run Code Online (Sandbox Code Playgroud)
我适合如下的模型:
model.fit('CPA ~ treatment', random=['1|campaign_uid'])
Run Code Online (Sandbox Code Playgroud)
据我所知,这个模型简单地说:
所以一个只想得到一个 后为每个这样的变量.
但是,看看下面的结果,我还得到了以下变量的后验:1|campaign_uid_offset.它代表什么?
拟合模型和图的代码:
model = Model(df)
results = model.fit('{} ~ treatment'.format(metric),
random=['1|campaign_uid'],
samples=1000)
# Plotting the result
pm.traceplot(model.backend.trace)
Run Code Online (Sandbox Code Playgroud) python-3.x pymc3 bambi multilevel-analysis hierarchical-bayesian
pymc3 ×2
python ×2
bambi ×1
brms ×1
jags ×1
lightgbm ×1
python-3.x ×1
r ×1
regression ×1
theano ×1