我无法解释 GRU 层 get_weights 的结果。这是我的代码 -
#Modified from - https://machinelearningmastery.com/understanding-simple-recurrent-neural-networks-in-keras/
from pandas import read_csv
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, SimpleRNN, GRU
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import math
import matplotlib.pyplot as plt
model = Sequential()
model.add(GRU(units = 2, input_shape = (3,1), activation = 'linear'))
model.add(Dense(units = 1, activation = 'linear'))
model.compile(loss = 'mean_squared_error', optimizer = 'adam')
initial_weights = model.layers[0].get_weights()
print("Shape = ",initial_weights)
Run Code Online (Sandbox Code Playgroud)
我熟悉 GRU 概念。此外,我了解 get_weights 如何用于 Keras Simple RNN …