我正在尝试安装flair. 执行以下命令时抛出以下错误:
pip install flair
ERROR: Packages installed from PyPI cannot depend on packages which are not also hosted on PyPI.
tiny-tokenizer depends on SudachiDict_core@ https://object-storage.tyo2.conoha.io/v1/nc_2520839e1f9641b08211a5c85243124a/sudachi/SudachiDict_core-20190927.tar.gz
我认为明确安装此软件包可能会修复错误,但事实并非如此。错误保持不变。SudachiDict-core 的安装版本如下:
SudachiDict-core 0.0.0
下面是环境:
任何提示表示赞赏。谢谢!
笔记:
torch包。安装 Torch 包后,它就得到了解决。错误如下所示:
ERROR: Could not find a version that satisfies the requirement torch>=1.1.0 (from flair) (from verERROR: No matching distribution found for torch>=1.1.0 (from flair)
import asyncio
import torch
import os
import pandas as pd
from flair.data import Sentence
from flair.embeddings import FlairEmbeddings, DocumentPoolEmbeddings, WordEmbeddings
device = torch.device("cpu")
print(device)
# first, declare how you want to embed
embeddings = DocumentPoolEmbeddings(
[WordEmbeddings('glove'), FlairEmbeddings('news-forward'), FlairEmbeddings('news-backward')])
path = os.getcwd()
df=pd.read_pickle(path+'/embedding_all_courses_2.pkl')
query_emd=[]
cos = torch.nn.CosineSimilarity(dim=0, eps=1e-6)
query= Sentence("some text")
embeddings.embed([query])
query_emd.append(query.embedding)
async def count(index,row):
for i in query_emd:
print(words,row['course_name'],cos(i, row['embedding']))
print(index)
async def main():
await asyncio.gather(*(count(index,row) for index,row in df.iterrows()))
if __name__ == "__main__":
import time
s = time.perf_counter() …Run Code Online (Sandbox Code Playgroud) 我正在尝试使用 Flair Framework(https://github.com/flairNLP/flair)训练命名实体识别模型,并使用以下嵌入:TransformerWordEmbeddings('emilyalsentzer/Bio_ClinicalBERT')。然而,它总是失败OverflowError: int too big to convert。这也发生在其他一些转换器词嵌入中,例如XLNet. 然而,BERT并且RoBERTa工作正常。
这是错误的完整回溯:
2021-04-15 09:34:48,106 ----------------------------------------------------------------------------------------------------
2021-04-15 09:34:48,106 Corpus: "Corpus: 778 train + 259 dev + 260 test sentences"
2021-04-15 09:34:48,106 ----------------------------------------------------------------------------------------------------
2021-04-15 09:34:48,106 Parameters:
2021-04-15 09:34:48,106 - learning_rate: "0.1"
2021-04-15 09:34:48,106 - mini_batch_size: "32"
2021-04-15 09:34:48,106 - patience: "3"
2021-04-15 09:34:48,106 - anneal_factor: "0.5"
2021-04-15 09:34:48,106 - max_epochs: "200"
2021-04-15 09:34:48,106 - shuffle: "True"
2021-04-15 09:34:48,106 - train_with_dev: "False"
2021-04-15 …Run Code Online (Sandbox Code Playgroud)