我在Python上安装Caffe Deep Learning Framework时遇到了麻烦:
当我make在caffe目录运行命令时,它说
hdf5.h:没有这样的目录
我已经完成的步骤:
更新和升级我的Ubuntu服务器
安装Python 2.7
运行cp cp Makefile.config.example Makefile.config
在Makefile.config中取消注释cpu_only = 1
如果有人能帮助我,我将不胜感激.
错误信息:
CXX src/caffe/util/hdf5.cpp
in file include from src/caffe/util/hdf5.cpp:1:0:
./include/caffe/util/hdf5.hpp:6:18: fatal error: hdf5.h: No such file or directory
compilation terminated
Makefile:572 recipe for target '.build_release/src/caffe/util/hdf5.o'
failed Make:*** [.build_release/src/caffe/util/hdf5.o] Error 1
Run Code Online (Sandbox Code Playgroud) 我想在keras中复制VGG16模型,以下是我的代码:
model = Sequential()
model.add(ZeroPadding2D((1,1),input_shape=(3,224,224)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2))) ###This line gives error
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, …Run Code Online (Sandbox Code Playgroud) 我试图预测一个人口的用水量.
我有1个主要输入:
和2个次要输入:
从理论上讲,它们与供水有关.
必须说每个降雨和温度数据都与水量相对应.所以这是一个时间序列问题.
问题是我不知道如何从一个.csv文件中使用3个输入,每个输入有3列,每个输入,如下面的代码所示.当我只有一个输入(例如水量)时,网络或多或少地使用此代码,但不是当我有多个输入时.(因此,如果您使用下面的csv文件运行此代码,则会显示维度错误).
阅读一些答案:
似乎很多人都有同样的问题.
代码:
编辑:代码已更新
import numpy
import matplotlib.pyplot as plt
import pandas
import math
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
# convert an array of values into a dataset matrix
def create_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset) - look_back - 1):
a = dataset[i:(i + look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, …Run Code Online (Sandbox Code Playgroud) 我正在使用Ubuntu 14.04,我有一个,TensorFlow V0.10但我想更新这个版本.如果我做:
$ pip install --upgrade $TF_BINARY_URL
Run Code Online (Sandbox Code Playgroud)
但它打印:
Exception:
Traceback (most recent call last):
File "/usr/lib/python2.7/dist-packages/pip/basecommand.py", line 122, in main
status = self.run(options, args)
File "/usr/lib/python2.7/dist-packages/pip/commands/install.py", line 278, in run
requirement_set.prepare_files(finder, force_root_egg_info=self.bundle, bundle=self.bundle)
File "/usr/lib/python2.7/dist-packages/pip/req.py", line 1198, in prepare_files
do_download,
File "/usr/lib/python2.7/dist-packages/pip/req.py", line 1376, in unpack_url
self.session,
File "/usr/lib/python2.7/dist-packages/pip/download.py", line 572, in unpack_http_url
download_hash = _download_url(resp, link, temp_location)
File "/usr/lib/python2.7/dist-packages/pip/download.py", line 433, in _download_url
for chunk in resp_read(4096):
File "/usr/lib/python2.7/dist-packages/pip/download.py", line 421, in resp_read
chunk_size, …Run Code Online (Sandbox Code Playgroud) 我有一个如下所示的模型:
IMG_WIDTH = IMG_HEIGHT = 224
class AlexNet(nn.Module):
def __init__(self, output_dim):
super(AlexNet, self).__init__()
self._to_linear = None
self.x = torch.randn(3, IMG_WIDTH, IMG_HEIGHT).view(-1, 3, IMG_WIDTH, IMG_HEIGHT)
self.features = nn.Sequential(
nn.Conv2d(3, 64, 3, 2, 1), # in_channels, out_channels, kernel_size, stride, padding
nn.MaxPool2d(2),
nn.ReLU(inplace=True),
nn.Conv2d(64, 192, 3, padding=1),
nn.MaxPool2d(2),
nn.ReLU(inplace=True),
nn.Conv2d(192, 384, 3, padding=1),
nn.MaxPool2d(2),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, 3, padding=1),
nn.MaxPool2d(2),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 256, 3, padding=1),
nn.MaxPool2d(2),
nn.ReLU(inplace=True)
)
self.conv(self.x)
self.classifier = nn.Sequential(
nn.Dropout(.5),
nn.Linear(self._to_linear, 4096),
nn.ReLU(inplace=True),
nn.Dropout(.5),
nn.Linear(4096, …Run Code Online (Sandbox Code Playgroud) 我正试图在TensorFlow中实现一个Siamese神经网络,但我无法在互联网上找到任何有用的例子(参见Yann LeCun论文).
我正在尝试构建的体系结构将包含两个共享权重的LSTM,并且仅在网络末端连接.
我的问题是:如何在TensorFlow中构建两个不同的神经网络共享其权重(绑定权重)以及如何在末尾连接它们?
谢谢 :)
编辑:我实现了一个连体网络的简单工作示例这里上MNIST.
据我了解,所有CNN都非常相似.它们都有一个卷积层,然后是池和relu层.有些人有像FlowNet和Segnet这样的专门层.我怀疑的是我们应该如何决定使用多少层以及如何为网络中的每个层设置内核大小.我已经找到了这个问题的答案,但我找不到具体的答案.网络是使用反复试验设计的,还是我不了解的一些特定规则?如果你能澄清一下,我将非常感谢你.
convolution neural-network deep-learning caffe conv-neural-network
我使用的是Windows 10,Python 3.5和tensorflow 1.1.0.我有以下脚本:
import tensorflow as tf
import tensorflow.contrib.keras.api.keras.backend as K
from tensorflow.contrib.keras.api.keras.layers import Dense
tf.reset_default_graph()
init = tf.global_variables_initializer()
sess = tf.Session()
K.set_session(sess) # Keras will use this sesssion to initialize all variables
input_x = tf.placeholder(tf.float32, [None, 10], name='input_x')
dense1 = Dense(10, activation='relu')(input_x)
sess.run(init)
dense1.get_weights()
Run Code Online (Sandbox Code Playgroud)
我收到错误: AttributeError: 'Tensor' object has no attribute 'weights'
我注意到在很多地方人们使用这样的东西,通常是在完全卷积网络,自动编码器和类似的东西:
model.add(UpSampling2D(size=(2,2)))
model.add(Conv2DTranspose(kernel_size=k, padding='same', strides=(1,1))
Run Code Online (Sandbox Code Playgroud)
我想知道它之间的区别是什么?
model.add(Conv2DTranspose(kernel_size=k, padding='same', strides=(2,2))
Run Code Online (Sandbox Code Playgroud)
我们欢迎任何解释这种差异的论文链接.
convolution deep-learning conv-neural-network keras deconvolution
我在google-colab上运行了fast.ai的lesson1.当我来到这条线
img = plt.imread(f'{PATH}valid/cats/{files[0]}')
plt.imshow(img);
Run Code Online (Sandbox Code Playgroud)
它没有显示图像.相反,我得到一个错误:
AttributeError: module 'PIL.Image' has no attribute 'register_extensions'
可能是什么导致了这个?
deep-learning ×10
python ×7
keras ×4
tensorflow ×4
caffe ×2
convolution ×2
keras-layer ×1
lstm ×1
pytorch ×1
upgrade ×1